

HYDROGEOLOGICAL INVESTIGATION

590 Argus Road, Oakville, Ontario

Client

590 Argus LP. 1-90 Wingold Avenue Toronto, Ontario, M6B 1P5

Project Number BIGC-ENV-554D

Prepared By:

B.I.G. Consulting Inc. 5500 Tomken Road, Unit 12 Mississauga, ON, L4W 2Z4 T: 416.214.4880 www.bigconsutlinginc.com

Date Submitted

October 8, 2024

Table of Contents

1	Introduction1			
	1.1	Project Description1	L	
	1.2	Project Objectives 1	L	
	1.3	Scope of Work1	L	
	1.4	Previous Reports)	
2	Regio	onal Setting	}	
	2.1	Regional Physiography	3	
	2.2	Regional Geology	3	
	2.3	Regional Hydrogeology	3	
3	Site S	Setting4	ŀ	
	3.1	Site Topography and Drainage	ł	
	3.2	Local Surface Water Features	ł	
	3.3	Ministry of Environment, Conservation and Parks Water Well Review	ŀ	
	3.4	Permit to Take Water and Environmental Activity and Sector Registry Search	ŀ	
4	Field	Program5	;	
	4.1	Borehole and Monitoring Well Details5	;	
	4.2	Site Specific Overburden Geology	5	
	4.3	Water Level Monitoring6	ŝ	
	4.4	Hydraulic Conductivity Testing	ŝ	
	4.5	Groundwater Sampling	1	
5	Temp	porary Construction Dewatering)	
	5.1	Construction Dewatering Requirements)	
	5.2	Construction Dewatering Flow Rate Assumptions)	
	5.3	Dewatering Flow Rate Equation)	
	5.4	Radius of Influence10)	
	5.5	Results of Construction Dewatering Flow Rate Estimates11	L	
6	Long	Term Discharge Estimate	2	
	6.1	Long-Term Dewatering Assumptions12	2	
	6.2	Radius of Influence12	2	
	6.3	Long-Term Perimeter Drain Flow Rate Estimate12)	
7	Poter	ntial Groundwater Impacts14	ŀ	
	7.1	Impacts to Nearby Groundwater Users14	ŀ	
	7.2	Impacts to Nearby Structures14	ļ	
8	Wate	er Taking and Discharge Permits15	;	
	8.1	EASR and PTTW15	5	
9	Conc	lusions16	;	
10	Limitations18			
11	References			

590 Argus LP. Hydrogeological Investigation 590 Argus Road, Oakville, Ontario BIGC-ENV-554D October 2024

List of Figures

- Figure 1Site Location Map
- Figure 2 Physiographic Regions of Southern Ontario
- Figure 3Surficial Geology of Southern Ontario
- Figure 4 MECP Water Well Record Locations
- Figure 5 EASR Record Locations
- Figure 6 Borehole/Monitoring Well Location Plan
- Figure 7 Geological Cross Section A-A'
- Figure 8A Shallow Groundwater Contour Map
- Figure 8BDeep Groundwater Contour Map

List of Appendices

Appendix ABorehole LogsAppendix BMECP WWR, PTTW and EASR Summary TablesAppendix CSWRT ResultsAppendix DWater Quality Laboratory Certificate of Analysis and Chain of CustodyAppendix EConstruction Dewatering Estimate Rate CalculationsAppendix FLong Term Drainage Flow Rate Estimate Calculations

1 Introduction

1.1 Project Description

B.I.G. Consulting Inc. (BIG) was retained by 590 Argus LP. (Client), to conduct a Hydrogeological Investigation to update the previously completed report for the site located at 590 Argus Road, Oakville, Ontario (Site). A previous report titled, "Preliminary Hydrogeological Investigation, 590 Argus Road, Oakville, Ontario," was prepared by BIG on February 1, 2023. The earlier field investigations remain valid following design updates.

The Site is located north of Argus Road and to the west of South Service Road East in Oakville, Ontario, as shown on Figure 1. The Site measures approximately 15,500 m² in size and is currently occupied by a commercial building (Site building). The areas surrounding the Site building are covered with asphalt and landscaped areas.

Based on the architectural drawings prepared by Teeple Architects Inc. (TAI), dated March 20, 2024, BIG understands that the proposed development will consist of three (3) condominium towers (referenced as 47-storey Building A, 50-storey Building B and 55-storey Building C, from west to east) with 3-storey podium and six (6) levels of underground parking structure (P6).

The following investigations previously completed for the subject Site and surrounding properties were reviewed by BIG:

- Memo Findings of Preliminary Geotechnical Investigation, 590 Argus Road, Oakville, Ontario, prepared by BIG, dated June 15, 2022.
- Phase II Environmental Site Assessment, 590 Argus Road, Oakville, Ontario, prepared by BIG, dated October 4, 2022.

It should be noted that the dewatering estimated provided in this report are based on the conceptual building information available at this time. If design details are changed (including any changes to excavation depth), the dewatering estimates must be revised to include the final layout of the development.

This report addresses the hydrogeological aspects of the proposed project. Reports for the Environmental Geotechnical Investigations will be issued under separate covers. The field investigations for the geotechnical, environmental and hydrogeological investigations were carried out concurrently.

1.2 Project Objectives

The main objectives of the Hydrogeological Investigation were to:

- a) Further establish the subsurface geological and hydrogeological conditions at the expected foundation elevation;
- b) Re-assessment of any potential construction dewatering flow rates;
- c) Re-assessment of foundation sub-drain discharge volumes, if applicable; and
- d) Prepare an updated Hydrogeological Investigation Report.

1.3 Scope of Work

The previous Preliminary Hydrogeological investigation conducted by BIG in February 1, 2023 consisted of the advancement of eight (8) boreholes (BH1 to BH8) and installation of five (5) monitoring wells (BH/MW1, BH/MW3, BH/MW4, BH/MW6 and BH/MW8), utilization of pre-existing monitoring wells at 581 to 587 Argus Avenue, 217 Cross Avenue and 571 Argus Avenue (BH/MW2, BH/MW5, BH/MW114 and

BH/MW115) installed by BIG to investigate the subsurface groundwater conditions, performing single well response tests (SWRT) at selected existing monitoring wells to assess the hydraulic characteristics at the Site and collection of one (1) groundwater sample for laboratory testing and compare it against the Regional Municipality of Halton and Town of Oakville Storm and Combined/Sanitary Sewer Use By-Law parameters.

To achieve the investigation objectives noted above, BIG proposed and initiated the following scope of work:

- a) Background desktop review of pertinent geological and hydrogeological resources;
- b) Review of the Ministry of Environment, Conservation and Parks (MECP) Water Well Records;
- c) Utilizing pre-existing monitoring wells drilled at the Site by BIG to investigate the subsurface groundwater conditions;
- Advancement of thirteen (13) boreholes (BH101 to BH113) to a maximum depth of 30.8 m below ground surface (bgs) and installation of ten (10) monitoring wells (BH/MW102, BH/MW105 to BH/MW113);
- e) Perform single well response tests (SWRT) at selected monitoring wells to assess the hydraulic characteristics of the saturated soils at the Site;
- f) Completion groundwater level measurements at all monitoring wells present on-Site;
- g) Evaluate the information of groundwater level measurements;
- h) Re-assessment of groundwater discharges during construction phases;
- i) Re-assessment of foundation sub-drain discharge volumes; and
- j) The preparation of an updated Hydrogeological Investigation Report.

1.4 Previous Reports

1.4.1 BIG Memo Findings of Preliminary Geotechnical Investigation

BIG completed a Memo – Findings of Preliminary Geotechnical Investigation at the Site, dated June 15, 2022, that consisted of advancement of eight (8) boreholes (BH1 to BH8) to a maximum depth of 7.7 m bgs and installation of five (5) monitoring wells (BH/MW1, BH/MW3, BH/MW4, BH/MW6 and BH/MW8).

1.4.2 BIG Phase II ESA

BIG completed a Phase II ESA at the Site, dated October 4, 2022, that consisted of advancement of eight (8) boreholes (BH1 to BH8) to a maximum depth of 7.7 m bgs and installation of five (5) monitoring wells (BH/MW1, BH/MW3, BH/MW4, BH/MW6 and BH/MW8).

2 Regional Setting

2.1 Regional Physiography

The Ontario Geological Survey Map P. 2204, indicates the Site lies in the Iroquois Plain physiographic region of Southern Ontario known as the shale plains. Figure 2 shows the physiographic regions of Southern Ontario around the Site.

During the last retreat of the Laurentide Ice Sheet (12,000 years B.P.) lake levels in what was to become Lake Ontario where much higher due to ice blockage in the St. Lawrence waterway. This created the glacial Lake Iroquois which was up to 60 m higher in elevation in the Toronto area than the current Lake Ontario water levels. The Iroquois Shoreline that coincided with this elevated lake, terminated just above St. Clair Avenue West.

2.2 Regional Geology

The surficial geology of the immediate area around the Site is described as Paleozoic bedrock. The surficial geology for the Site and surrounding areas is shown on Figure 3.

Bedrock of the region corresponds to the Georgian Bay Formation, Blue Mountain Formation, Billings Formation, Collingwood Member and Eastview Member consisting of shale, limestone, dolostone and siltstone. The contact between the bedrock and the overlying overburden is expected to be at approximately 1.5 m to 3.1 m bgs.

2.3 Regional Hydrogeology

Groundwater movement through the subsurface is controlled by hydraulic gradients, the physical characteristics of the sediments, and the interconnectedness of lithological formations. Fine grained sediments restrict lateral movement of groundwater and induce vertical infiltration, while coarse grained sediments allow vertical flow with increased transmissivity.

The regional shallow groundwater flow is expected to follow the local topography and discharge to local area creeks and streams. Local deviation from the regional groundwater flow directions may occur in response to changes in topography and/or soil stratigraphy, as well as the presence of surface water features and/or existing subsurface infrastructure.

No local aquifers were identified that could negatively impact the subject Site.

590 Argus LP. Hydrogeological Investigation 590 Argus Road, Oakville, Ontario BIGC-ENV-554D October 2024

3 Site Setting

3.1 Site Topography and Drainage

The Site is rectangular in shape and has an area of approximately 15,500 m². The Site is currently occupied by a commercial building (Site building). The areas surrounding the Site building are covered with asphalt and landscaped areas. The topography of the Site generally slopes to the south/southeast and based on the borehole logs, the ground elevation ranges between 105.36 m and 104.45 m above sea level (asl).

3.2 Local Surface Water Features

The Site does not feature any surface water bodies on the Site. The closest surface water body to the Site is Sixteen Mile Creek, located approximately 470 m southwest of the Site. The Site is situated within the Lower Morrison Creek watershed and is not part of a Conservation Halton regulated area.

3.3 Ministry of Environment, Conservation and Parks Water Well Review

Well Records from the Ministry of Environment, Conservation and Parks (MECP) Water Well Record Database (WWR) were reviewed to determine the number of water wells and locations present within a 500 m radius of the Site boundaries.

The MECP WWR database indicated one-hundred one (101) well records within 500 m radius of the Site. All identified wells are shown on Figure 4. A summary of the Water Well Records is included in Appendix B, Table B-1. A review of the records indicated that the majority of the wells were classified as abandoned or for observation well, monitoring well and test hole purposes within 500 m radius of the Site. One (1) supply water well was identified at the Queen Elizabeth Way, located approximate 265 m southwest of the Site. The well was installed in 1948 and the well is located in a developed area, the supply well is likely not present. Given the area is serviced by municipal system, no private well water user is expected.

3.4 Permit to Take Water and Environmental Activity and Sector Registry Search

The MECP also maintains a database of all active and expired Permit to Take Water (PTTW) and Environmental Activity and Sector Registry (EASR) items related to construction dewatering and pumping test. There are seven (7) expired PTTW registrations and two (2) expired EASR registrations within 1 km of the Site and are summarized in Table B-2, Appendix B. The location for each registration is shown on Figure 5.

4 Field Program

4.1 Borehole and Monitoring Well Details

BIG advanced thirteen (13) boreholes (BH101 to BH113) to a maximum depth of 30.8 m below ground surface (bgs) between February 10 and March 1, 2023, and instrumented ten (10) boreholes with monitoring wells (BH/MW102, BH/MW105 to BH/MW113). The boreholes were advanced by using a truck mounted solid stem and hollow stem continuous flight auger equipment under the direction and supervision of BIG field personnel. Soil samples were retrieved at regular intervals with a 50 mm outside diameter split barrel sampler drive and accordance with the Standard Penetration Test Procedure (ASTM D1586). The samples were logged in the field and returned to the BIG laboratory for detailed visual examination. The borehole records and monitoring well construction detail are included in Appendix A.

The following monitoring wells were previously installed at the Site:

a) Five (5) monitoring wells (BH/MW1, BH/MW3, BH/MW4, BH/MW6, BH/MW8) installed by BIG in 2022.

Figure 6 is a detailed Borehole/Monitoring Well Location Map of the Site. The borehole logs are attached in Appendix A.

4.2 Site Specific Overburden Geology

The borehole locations are shown on Figure 6 and detailed subsurface and bedrock conditions are presented on the borehole logs in Appendix A. The following table is provided in addition to the borehole descriptions to provide a general summary of the soil conditions. The soil descriptions are predominately based on BIG's investigation, however, where applicable soil conditions encountered during previous investigation by others are included. The soil boundaries indicated on the borehole logs and discussed herein are inferred from the visual observations and auger resistance and should not be regarded as exact planes of geological change.

The soil conditions encountered at the borehole locations are summarized below. A stratigraphic crosssection across the property as aligned on Figure 6 is included as Figure 7.

Layer	Description
Asphalt	All boreholes were drilled through the existing pavement. The pavement structure
Pavement	consists of approximately 40 to 100 mm (average 57 mm) of asphaltic concrete over
	100 to 240 mm (average 133 mm) of granular base, with the exception of
	BH/MW111 where 50 mm asphalt over 140 mm crush asphalt and 180 mm granular
	base were encountered.
Fill	Fill materials were encountered below the asphalt pavement in all boreholes and
	extended to depths ranging from 0.8 m to 2.3 m bgs. The fill materials encountered
	are heterogeneous in nature and primarily consist of silty clay, clayey silt, sandy silt,
	silty sand and sand and gravel, with a trace of organics, black stains/streaks and
	shale fragments.
Silty Clay/Clayey	A stratum of silty clay/clayey silt/shale complex was encountered below the fill
Silt/Shale	materials in all boreholes except BH/MW4, BH7 and BH/MW8. The deposits
Complex	extended to depths ranging from approximately 1.5 to 3.1 m bgs.
Shale Bedrock	Below the overburden soils in all boreholes, reddish brown to grey, highly
	weathered to fresh shale bedrock of Georgian Bay Formation was encountered. All
	boreholes were terminated within the shale bedrock at depths ranging from 2.7 to
	30.8 m bgs.

Table 4-1: Soil description

4.3 Water Level Monitoring

Water levels at all monitoring well locations were recorded after installation. A summary of all available water level observations is included in Table 4-2. Groundwater was observed in some monitoring wells on March 23, 2023, and depths to the groundwater ranged from 2.46 m to 22.00 m bgs. The shallow wells BH/MW1, BH/MW3, BH/MW4, BH/MW6, BH/MW8, BH/MW102, BH/MW105 and BH/MW106 were observed with groundwater elevations that ranged from 102.85 m to 100.68 m asl. The deep wells BH/MW108, BH/MW109, BH/MW110, BH/MW111, BH/MW112 and BH/MW113 were observed with groundwater elevations that ranged from 101.46 m to 83.08 m asl.

An interpreted shallow and deep groundwater contour maps for the water level measurements recorded on March 23, 2023, is included as Figures 8A and 8B, respectively. Based on the water level measurements obtained, the inferred shallow direction of groundwater flow across the Site is interpreted to be to the southeastern direction. Based on the water level measurements obtained, the inferred deep direction of groundwater flow across the Site is interpreted to be to the southern direction.

Seasonal variability can produce significant changes to the static water level. It has been observed that groundwater can rise and lower in response to changing weather and climate.

		Creational	Mall	May	31, 2022	March	3, 2023	March	23, 2023
Well ID	Consultant	Elevation (m asl)	Depth (m bgs)	Water Level (m bgs)	Elevation (m asl)	Water Level (m bgs)	Elevation (m asl)	Water Level (m bgs)	Elevation (m asl)
BH/MW1	BIG	104.45	6.1	3.90	100.55	3.36	101.09	3.59	100.86
BH/MW3	BIG	104.84	6.1	3.37	101.47	2.88	101.96	3.06	101.78
BH/MW4	BIG	105.05	6.1	3.44	101.61	3.08	101.97	3.18	101.87
BH/MW6	BIG	105.36	6.1	2.92	102.44	N/A	N/A	2.51	102.85
BH/MW8	BIG	105.12	6.1	4.55	100.57	N/A	N/A	4.37	100.75
BH/MW102	BIG	105.04	5.9	-	-	3.52	101.52	3.42	101.62
BH/MW105	BIG	104.96	6.1	-	-	4.20	100.76	4.28	100.68
BH/MW106	BIG	105.13	6.1	-	-	2.41	102.72	2.46	102.67
BH/MW107	BIG	104.65	5.9	-	-	N/A	N/A	N/A	N/A
BH/MW108	BIG	104.51	13.7	-	-	3.45	101.06	3.57	100.94
BH/MW109	BIG	105.09	24.4	-	-	23.09	82.00	17.43	87.66
BH/MW110	BIG	105.30	12.2	-	-	3.66	101.64	3.84	101.46
BH/MW111	BIG	105.08	18.3	-	-	6.84	98.24	6.71	98.37
BH/MW112	BIG	104.85	15.2	-	-	5.04	99.81	5.05	99.80
BH/MW113	BIG	105.08	24.4	-	-	23.84	81.24	22.00	83.08

Table 4-2: Monitoring Well Details and Water Levels Elevations

Notes:

N/A – Not accessible

4.4 Hydraulic Conductivity Testing

The hydraulic conductivity test was completed to estimate the saturated hydraulic conductivity (K) of the soil at the well screen depth at selected monitoring well locations.

In advance of performing SWRT, the monitoring well was developed to remove the potential presence of fine sediments. The development process involved purging of the monitoring wells to induce the flow of fresh formation water through the screen. The monitoring well water level was permitted to fully recover prior to performing SWRTs.

During the SWRT, a slug of water was instantaneously removed from the well and the response to the water level is recorded. The Hydraulic Conductivity values for each of the tested wells were calculated from the SWRT data using Aqtesolv Software and the Hvorslev solution for unconfined conditions. The semi-log plots for normalized drawdown versus time are included in Appendix C.

The summary of the hydraulic conductivity (K) values estimated from the SWRTs are provided below in Table 4-3:

Monitoring Well	Well Depth (m bgs)	Screen Material	Hydraulic Conductivity (m/s)
BH/MW1	6.1	Shale	7.46 x 10 ⁻⁶
BH/MW3	6.1	Shale	2.71 x 10 ⁻⁵
BH/MW4	6.1	Shale	5.87 x 10 ⁻⁸
BH/MW6	6.1	Shale	1.24 × 10 ⁻⁵
BH/MW8	6.1	Shale	2.28 x 10 ⁻⁶
BH/MW102	5.9	Shale	3.26 x 10 ⁻⁶
BH/MW106	6.1	Shale	4.87 x 10 ⁻⁶
BH/MW108	13.7	Shale	4.07 x 10 ⁻⁶
BH/MW109	24.4	Shale	1.52 x 10 ⁻⁸
BH/MW110	12.2	Shale	1.27 x 10 ⁻⁶
BH/MW111	18.3	Shale	1.47 x 10 ⁻⁷
BH/MW112	15.2	Shale	5.48 x 10 ⁻⁶
BH/MW113	24.4	Shale	3.73 x 10 ⁻⁸
		Geometric mean K value (m/s)	1.22 x 10 ⁻⁶

Table 4-3: Summary of Hydraulic Conductivity (K) Testing Results

The SWRT provides an estimate of K for the geological formation in the immediate media zone surrounding the well screen and may not be representative of bulk formation hydraulic conductivities.

4.5 Groundwater Sampling

To assess the suitability for discharge of pumped groundwater to the Region of Halton Sanitary or Town of Oakville Storm Sewer during dewatering activities, a groundwater sample was collected from BH/MW1 on June 3, 2022.

Prior to collection of the samples, approximately three (3) standing well volumes of groundwater were purged from the well. The sample was collected and placed into pre-cleaned laboratory-supplied vials and/or bottles provided with analytical test group specific preservatives, as required.

The sample was not field filtered. Dedicated nitrile gloves were used during sample handling. The groundwater sample was submitted to an independent laboratory, Bureau Veritas Laboratories, of Mississauga, Ontario, for analysis.

For the assessment purposes, the analytical results were compared to Table 1 - Limits for Sanitary and Combined Sewer Discharge (By-Law No. 2-03) of the Regional Municipality of Halton; and Table 2 - Limits for Storm Sewer Discharge (By-Law No 2009-031) of the Corporation of the Town of Oakville.

The laboratory Certificate of Analysis (CofAs) and chain of custody are enclosed in Appendix D.

The laboratory CofAs show that there were no exceedances against the Table 1 – Limits for Sanitary and Combined Sewer Discharge.

When compared against the more stringent Table 2 – Limits for Storm Sewer Discharge, the sample indicated exceedance for benzene, total manganese (Mn) and total suspended solids (TSS). A summary of the exceedance is provided in Table 4-4.

Parameter	Limits for Sanitary and Combined Sewer Discharge (mg/L) (Table 1)	Limits for Storm Sewer Discharge (mg/L) (Table 2)	Concentration for BH/MW1 (mg/L) (June 3, 2022)
Benzene	0.01	0.002	0.0024
Total Manganese (Mn)	5	0.05	0.20
Total Suspended Solids (TSS)	350	15	110

Notes:

Bold indicates concentration exceeds the Storm Sewer Discharge Limit.

If the groundwater encountered is discharged to the Region of Halton sanitary and combined sewer, no treatment will be required. A treatment is required prior to discharge to the Town of Oakville storm sewer.

Although the water quality meets the limits of Region of Halton sanitary and combined sewer, the Region typically does not typically allow groundwater discharge to the Regional sewer system. Alternative discharge method or negotiation with the Town of Oakville will be required.

5 Temporary Construction Dewatering

5.1 **Construction Dewatering Requirements**

It is BIG's understanding that the proposed re-development at the Site will consist of three (3) condominium towers (referenced as 47-storey Building A, 50-storey Building B and 55-storey Building C, from west to east) with 3-storey podium and six (6) levels of underground parking structure (P6). Based on A200, Level P6 Plan, prepared by TAI, dated March 20, 2024, the finished floor elevation (FFE) of P6 is at 85.28 m asl. The footing elevation is assumed approximately 2 m below FFE.

The stabilized groundwater level measurements, both in shallow and deep monitoring wells, observed in some monitoring wells on March 23, 2023 were found to be varying between elevations of 102.85 m to 83.08 m asl. For conservative purposes, the construction dewatering calculation is based on an open cut excavation at the present time. To excavate under dry conditions, the water level is anticipated to be lowered at least to a minimum of approximately 1.0 m below the footing elevation.

If the footing or foundation elevation is deeper than the assumptions in this report, additional investigation will be required.

Additional dewatering capacity may be required to maintain dry conditions within the excavation during and following significant precipitation events. It should be noted that the dewatering estimates provided in this report are based on the conceptual building information available at this time. If design details are changed (including any changes to excavation depth), the dewatering estimates must be revised to include the final layout of the development.

5.2 Construction Dewatering Flow Rate Assumptions

The assumptions used for the calculation of the dewatering rate for the proposed development are presented in Table 5-1.

Input Parameter	P6	Notes
		Based on drawing A401, North and South
Established Grade Elevation (m asl)	104.96	Elevations, prepared by TAI, dated March 20,
		2024
		P6 FFE is 85.28 m asl based on drawing A200,
P6 FFE (m asl)	85.28	Level P6 Plan, prepared by TAI, dated March 20,
		2024
Footing Elevation (m asl)	83.28	Assumed 2 m below FFE
Dewatered Elevation Target (m asl)	82.28	Assumed 1 m below footing
Groundwater Elevation (m asl)	102.85	Highest groundwater elevation (March 23, 2023)
Estimated Excavation Area	150 m x 90 m	Based on drawing A200, Level P6 Plan, prepared
		by TAI, dated March 20, 2024
Hydraulic Conductivity (m/s)	1.22E-6	Geometric mean K

Table 5-1 - Dewatering Estimate Assumptions

5.3 Dewatering Flow Rate Equation

The Dupuit equation for steady flow from a linear source on both sides of a rectangular slot of an excavation through an unconfined aquifer resting on a horizontal impervious surface was used to obtain a flow rate estimate, and is expressed as follows:

590 Argus LP. Hydrogeological Investigation 590 Argus Road, Oakville, Ontario BIGC-ENV-554D October 2024

$$Q_w = \frac{K(x+a)(H^2 - h^2)}{Lo}$$

Where:

Qw	= Rate of pumping (m ³ /s)
х	= Length of excavation (m)
а	= Width of excavation (m)
Κ	= Hydraulic conductivity (m/s)
Н	= Head beyond the influence of pumping (static groundwater elevation) (m)
h	= Head above base of aquifer at the excavation (m)
Lo	= Distance to Line Source (m)

It is expected that the initial dewatering rate will be higher in order to remove groundwater from within the overburden and bedrock formations. The dewatering rates are expected to decrease once the target water level is achieved in the excavation footprint as groundwater will have been removed locally from storage resulting in lower seepage rates into the excavation. Additionally, the use of a continuous caisson shoring system will further reduce groundwater migration into the excavation reducing the ongoing seepage rate.

5.4 Radius of Influence

The Radius of Influence (ROI) for the construction dewatering is based on the empirical Sichardt Equation. This equation is used to predict the distance at which the drawdown resulting from pumping is negligible. This equation is empirical and was developed to provide representative flow rates using the steady state flow dewatering equations, as discussed below.

It is noted that in steady state conditions, the radius of influence of pumping will extend until boundary flow conditions are reached and provide sufficient water inputs to the aquifer, such as recharge and surface water bodies. As a result, the distance of influence calculated using Sichardt equation is used to provide a representative flow rate calculation, but it is not precise in determining the actual radius influenced by pumping.

The ROI of pumping (dewatering) for linear flow is calculated based on the Sichardt equation, which is described as follows:

$$Lo = 1750 (H - h)\sqrt{K}$$

Where:

K = Hydraulic conductivity (m/s)

H = Static Saturated Head (m)

h = Dynamic Saturated Head (m)

Based on the Sichardt equation and the geometric mean K value, the ROI is approximately 39.7 m from the edge of the excavation for linear flow. The ROI calculation is provided in Appendix E.

The ROI calculation is a conservative methodology and is calculated based on the assumption of active pumping during the construction dewatering. It should be noted that most of the water will be pumped during the first stage of the construction period or when a rain event occurs.

Although the ROI was conservatively predicted as 39.7 m from the edge of the excavation, over a period of time, the drawdown curve will be very close to the bottom of the excavation and thus resulting in negligible ROI. The likelihood for impacts to the nearby structures are negligible. Additionally, the use of a shoring system will further reduce radius of influence.

5.5 Results of Construction Dewatering Flow Rate Estimates

Based on the assumptions provided in this report, the results of the dewatering rate estimate are as follows:

Underground	Construction Dewatering Flow Rate	Peak Construction Dewatering Flow Rate
Levels	Without Safety Factor (L/day)	Including Safety Factor of 1.5 (L/day)
P6	266,000	399,000

Construction dewatering flow rate estimates are provided in Table E-1, in Appendix E.

The peak construction dewatering flow rate includes a factor of safety of one and a half (1.5) to account for accumulation of rainfall, seasonal fluctuations in the groundwater table, flow from beddings of existing sewers, and variation in hydrogeological properties beyond those encountered during the course of this study. This total dewatering flow rate also provides additional capacity for the dewatering contractors. Given that the predicted dewatering volume exceeds the 50,000 L/day limit, an EASR for construction dewatering will be required.

It should be noted that if caisson wall shoring system is considered for the subject Site, reduction in groundwater quantities can be anticipated.

Please note that it is the responsibility of the contractor to ensure dry conditions are maintained within the excavation at all times. The dewatering contractor should ensure that silt removal or replacement from subsoil be eliminated and monitored during remediation dewatering at all times.

Additional pumping capacity may be required to maintain dry conditions within the excavation during and following significant precipitation events. Additionally, the presence of near-surface fill material could hold significant groundwater.

The maximum flow calculation is intended to provide a conservative estimate to account for unforeseeable conditions that may arise during construction. It should be noted that the dewatering estimate provided in this report are based on the proposed development information available at this time. If changes to the design are implemented (e.g., increase to planned excavation depths, widening of excavations, etc.), the dewatering estimates must be revised to include and reflect future changes.

6 Long Term Discharge Estimate

6.1 Long-Term Dewatering Assumptions

Given that the groundwater level is above foundation depths for the development, a permanent foundation sub-drain is recommended. It is assumed that the below grade structure will feature a perimeter drain and sub-drain system installed at approximately 0.5 m below the FFE elevation. Table 6-1 presents the assumptions used to calculate the long-term drainage rate estimates.

Once the design is available, BIG needs to review and re-evaluate the dewatering estimates. If the foundation elevation is deeper than the assumptions in this report, additional investigation will be required.

Input Parameter	P6	Notes
Established Grade Elevation (m		Based on drawing A401, North and South
	104.96	Elevations, prepared by TAI, dated March 20,
asij		2024
		P6 FFE is 85.28 m asl based on drawing A200,
P6 FFE (m asl)	85.28	Level P6 Plan, prepared by TAI, dated March 20,
		2024
Groundwater Elevation (masl)	98.37	Highest deep groundwater elevation from
Groundwater Elevation (in asi)		BH/MW111 (March 23, 2023)
Sub drain Flowation Target (masl)	01 70	Assumed 0.5 m below the P6 basement
Sub-drain Elevation Target (in asi)	04.70	elevation
Drainago Dimonsions	150 m x 90 m	Based on drawing A200, Level P6 Plan, prepared
		by TAI, dated March 20, 2024
Hydraulic Conductivity (m/s)	2.30E-07	Geometric mean K of deep wells

Table 6-1 - Dewatering Estimate Assumptions

6.2 Radius of Influence

The ROI calculation is a conservative methodology and is calculated based on the assumption of active pumping during long-term dewatering. It should be noted that there will be no active pumping during long-term dewatering. The foundation drains will be constructed below the floor slab and/or near the foundation and the groundwater would passively drain into these sub drains and discharged directly to sumps. Due to the nature of overburden material, the groundwater will flow through the natural gradient that exists on the Site and passively flow into the foundation sub-drains and will not be actively pumped. Although, the ROI which was conservatively predicted was at 29.0 m from the edge of the sub-drain, over a period of time, the drawdown curve will be very close to the foundation walls and thus resulting in negligible ROI.

6.3 Long-Term Perimeter Drain Flow Rate Estimate

Based on the assumptions provided in this report (outlined in Section 6.1), the results of the long-term discharge volume estimate are summarized below:

Table 6-2 Summary of Long-Term Discharge Flow Rate

Underground Levels	Long-Term Peak Flow Rate (L/day)	Notes
P6	66.000	Long term sub-drain flow value rounded based on Dupuit's equation including flow from all sides.
		Safety factor of 2 was used.

The results for the estimate are available in Appendix F, Table F-1. The maximum flow rate estimates represent short term events and are not indicative of long-term continuous contributions to the drainage system. Intermittent cycling of sump pumps and seasonal fluctuation in groundwater regimes should be considered for pump specifications. Given that the predicted dewatering volume exceeds the 50,000 L/day limit, a PTTW is required.

It should be noted that the dewatering estimates provided in this report are based on the proposed building information available at this time.

If the groundwater encountered during long-term dewatering is discharged to the Region of Halton sanitary and combined sewer, no treatment will be required. A treatment is required prior to discharge to the Town of Oakville storm sewer.

In the event that the long-term foundation drainage is not allowed to discharge into the City's sewer system, the proposed building may be designed and supported by "tanked" water-proofed continuous raft foundation without permanent dewatering (i.e., avoiding permanent perimeter and under-floor drainage system).

7 Potential Groundwater Impacts

7.1 Impacts to Nearby Groundwater Users

The Site lies within an urban area of Oakville, based on the MECP WWR database, one (1) supply water well was identified at the Queen Elizabeth Way, located approximate 265 m southwest of the Site. The well was installed in 1948, and the well is located in a developed area, the supply well is likely not present. Given the area is serviced by municipal system, no private well water user is expected. There are no potential impacts to nearby groundwater users due to construction dewatering or long-term dewatering is expected.

7.2 Impacts to Nearby Structures

As discussed in Section 5, given the groundwater table is above the excavation, construction dewatering is required. The ROI calculation is a conservative methodology and is calculated based on the assumption of active pumping during the construction dewatering. It should be noted that most of the water will be pumped during the first stage of the construction period or when a rain event occurs. Although the ROI was conservatively predicted as 39.7 m from the edge of the excavation, over a period of time, the drawdown curve will be very close to the bottom of the excavation and thus resulting in negligible ROI. The likelihood for impacts to the nearby structures are negligible. Additionally, the use of a shoring system will further reduce radius of influence.

As discussed in Section 6, given that the groundwater level is above foundation depths for the development, a permanent foundation sub-drain is recommended. It is assumed that the below grade structure will feature a perimeter drain and sub-drain system installed at approximately 0.5 m below the basement elevation. If the foundation drains operate on a long-term basis, the radius of influence was conservatively estimated at 29.0 m from the edge of the sub-drain. However, unlike the construction dewatering activities where active dewatering takes places, the long-term dewatering operates passively where water would flow through fractured bedrock primarily via vertical drains. Therefore, the actual radius of influence will be less than the predicted distance and no impacts to the surrounding feature is expected.

8 Water Taking and Discharge Permits

8.1 EASR and PTTW

During the active construction dewatering phase, the volume of water expected to be pumped exceeds the daily limit on groundwater taking under the Ontario Water Resources Act (50,000 L/day) if the excavation is to be undertaken all at once. Therefore, it is necessary to register the construction dewatering under the EASR guidelines, as cumulative discharge rate for construction is 399,000 L/day. The limit for water taking under an EASR is 400,000 L/day. If combined storm and groundwater were to exceed this limit, the dewatering rate would need to be capped to 400,000 L/day of pumped water. If it is necessary to exceed 400,000 L/day of water taking, a Permit to Take Water as per O.Reg.387/04 would be required.

Given that the predicted long-term dewatering volume exceeds the 50,000 L/day limit, a PTTW for long-term discharge is required.

9 Conclusions

Based on the findings of the Preliminary Hydrogeological Investigation, the following summary of conclusions are provided:

- a) It is BIG's understanding that the proposed re-development will consist of three (3) condominium towers (referenced as 47-storey Building A, 50-storey Building B and 55-storey Building C, from west to east) with 3-storey podium and six (6) levels of underground parking structure;
- b) The Site is located within a physiographic region within the Iroquois Plain known as the shale plains;
- c) The surficial geology of the immediate area around the Site is described as Paleozoic bedrock;
- d) The MECP WWR database indicated one-hundred one (101) well records within 500 m radius of the Site. One (1) supply water well was identified at the Queen Elizabeth Way, located approximate 265 m southwest of the Site. The well was installed in 1948 and the well is located in a developed area, the supply well is likely not present. Given the area is serviced by municipal system, no private well water user is expected;
- e) Groundwater was observed in some monitoring wells on March 23, 2023 and depths to the groundwater ranged from 2.46 m to 22.00 m bgs. The shallow wells BH/MW1, BH/MW3, BH/MW4, BH/MW6, BH/MW8, BH/MW102, BH/MW105 and BH/MW106 were observed with groundwater elevations that ranged from 102.85 m to 100.68 m asl. The deep wells BH/MW108, BH/MW109, BH/MW110, BH/MW111, BH/MW112 and BH/MW113 were observed with groundwater elevations that ranged from 101.46 m to 83.08 m asl;
- f) Based on the water level measurements obtained, the inferred shallow direction of groundwater flow across the Site is interpreted to be to the southeastern direction. Based on the water level measurements obtained, the inferred deep direction of groundwater flow across the Site is interpreted to be to the southern direction;
- g) The estimated hydraulic conductivity of the soil and bedrock ranges from 2.71×10^{-5} m/s to 1.52×10^{-8} m/s with a geometric mean of 1.22×10^{-6} m/s;
- h) Based on the assumptions outlined in this report, the estimated peak construction dewatering flow rate including rainfall for the proposed construction activity is 399,000 L/day;
- i) Based on the assumptions outlined in this report, the cumulative contribution to the foundation drains is 66,000 L/day;
- j) Given that the predicted dewatering volume exceeds the 50,000 L/day limit, an EASR for construction dewatering is required;
- k) Given that the predicted long-term dewatering volume exceeds the 50,000 L/day limit, a PTTW for long-term discharge is required;
- The laboratory CofA shows that no exceedance under Table 1 Limits for Sanitary and Combined Sewer Discharge;
- m) When compared against the more stringent Table 2 Limits for Storm Sewer Discharge, the sample indicated exceedances for benzene, total manganese (Mn) and total suspended solids (TSS);
- If the groundwater encountered is discharged to the Region of Halton sanitary and combined sewer, no treatment will be required. A treatment is required prior to discharge to the Town of Oakville storm sewer; and,
- o) Although the water quality meets the limits of Region of Halton sanitary and combined sewer, the Region typically does not typically allow groundwater discharge to the Regional sewer system. Alternative discharge method or negotiation with the Town of Oakville will be required.

It should be noted that the comments and recommendations in this report are based on the assumption that the present design concept described throughout the report will proceed to construction. Any changes to the design concept may result in a modification to the recommendations provided in this report. It is noted that these conclusions and recommendations should be read in conjunction with the entirety of the report.

590 Argus LP. Hydrogeological Investigation 590 Argus Road, Oakville, Ontario BIGC-ENV-554D October 2024

10 Limitations

This report is based on a limited investigation designed to provide information to support an assessment of the current hydrogeological conditions within the study area. The conclusion and recommendations presented within this report reflect Site conditions existing at the time of the assessment. BIG must be contacted immediately if any unforeseen Site conditions are experienced during the dewatering activities. This will allow BIG to review the new findings and provide appropriate recommendations to allow the construction to proceed in a timely and cost-effective manner.

Our undertaking at BIG, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the geoscience profession. No other warranty or presentation, either expressed or implied, is included or intended in this report.

We trust that this information is satisfactory for your purposes. Should you have any questions or comments, please do not hesitate to contact our office.

Yours truly,

B.I.G. Consulting Inc.

Travis Van Holst, M.Env.Sc., GIT Environmental Scientist

Wei (Will) Guo, M.Sc., P.Geo. Senior Hydrogeologist

11 References

B.I.G. Consulting Inc. (2022). Memo – Findings of Preliminary Geotechnical Investigation, 590 Argus Road, Oakville, Ontario, dated June 15, 2022.

B.I.G. Consulting Inc. (2022). Phase II Environmental Site Assessment, 590 Argus Road, Oakville, Ontario, dated October 4, 2022.

Cashman, P. M. (2013). *Groundwater Lowering in Construction: A Practical Guide to Dewatering (Second Ed.).*

Chapman, L., & Putnam, D. (2007). Physiography of Southern Ontario. *Miscellaneous Release, Data 228 ISBN 978-1-4249-5158-1*. Ontario Geological Survey.

Ministry of Environment, Conservation and Parks. (2017). Ontario Water Resources Act.

Ontario Water Resources Act, Ontario Regulation 387/04, as amended. (2016). *Water Taking and Transfer*.

Ontario Ministry of Environment, Conservation and Parks, Map: Well Records, 2021. Accessed online at https://www.ontario.ca/environment-and-energy/map-well-records

Singer, S.N., Cheng, C.K., and Scafe, M.G. (2003). The Hydrogeology of Southern Ontario, 2nd Edition. Environmental Monitoring and Reporting Branch, Ontario Ministry of Environment.

The Corporation of te Town of Oakville (2009). *By-Law Number 2009-031 – A By-law to Regulate the Use of Municipal Storm Sewers and to repeal and replace By-law 2008-041.*

The Regional Municipality of Halton (2001). By-Law No.2-03

FIGURES

APPENDIX A: BOREHOLE LOGS

RECORD OF BOREHOLE No. <u>BH101</u>													10	BLG. Conductives
Proj	ect Number: BIGC-ENV-554D	1						Drilling	J Location:	See borehol	e location plan	Logged by:	<u>FJ</u>	
Proj	Project Client: Distrikt Capital Corporation							Drilling	g Method:	150 mm So	lid Stem Augering	Compiled by:	MM	
Proj Proj	ect Name: Phase II ESA an Hydrogeologica	d Supplementa I Investigations	ary Geo s	otechn	ical an	d		Drilling	g Machine:	Truck Moun	ted Drill	h 23	Reviewed by:	KK
110														0, 10/4/20
hology Plot	DESCRIPTION			mple Number	covery (%)	T 'N' Value/RQD%	EPTH (m)	EVATION (m)	Penetral O SPT MTO Vane* ▲ Intact ▲ Remould	ESTING DCPT Nilcon Vane* A Intact Remould	LAB TESTING Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 Lower Explosive Limit (LEL) W _P W W Plastic Linuid	STRUMENTATION STALLATION	COMMEN	ITS
Liti	Geodetic Ground Surface Elevation: ASPHALT PAVEMENT: 40 mm a	105.00 m isphalt ov e 04.85	Sa	Sa	Re	ß	۳ ۲		20 40	60 80	20 40 60 80	žž		
	120 mm granular base FILL: silty sand, some clay, trace limestone fragments, black streak loose	gravel, trace s, brown, wet,	SS	1	54	8		-	0		o ¹³			
	oxidization, brown to grey, moist,	firm	SS	2	33	6	- - 1 -	104 -	0		o ²³			
	103.48 SILTY CLAY/SHALE COMPLEX: trace sand, 1.5 trace gravel, trace limestone fragments, reddish brown to grey, moist, hard		SS	3	54	38	- - - - - 2	103 -	Ö		o ²⁰			
	BEDROCK: Shale, grey, moist	102.56 2.4	SS	4	100	50/10 cm		-	5 10 cr	0 O n				
	End of Borehole due to Auger Refusal 102.10 2.9 2.9													
	Notes: 1. Borehole open and dry upon co drilling.	ompletion of												
B.I.G 12-5	5. Consulting Inc. 500 Tomken Rd. issauga. ON I 4W 274	⊻ No freesta	anding (groundv	vater me	easured	in oper	n boreho	le on completio	on of drilling.				
Cana T: 41 F: 41	ada 6-214-4880 6-551-2633	wehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance m a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was mmisioned and the accompanying'Notes to Record of Boreholes'.												

RECORD OF BOREHOLE No. BH/MW102												10	B.LG. Consultive				
Proj	ject Number: BIGC-EI					Drilling	Location:	See boreho	le locatior	Logged by:	<u>FJ</u>						
Proj	Project Client: Distrikt Capital Corporation							Drilling	Method:	150 mm So	olid Stem		_ Compiled by:	MM			
Project Name: Phase II ESA and Supplementa Hydrogeological Investigations				otechn	ical an	d		Drilling	Machine:	Truck Mour	ted Drill			_ Reviewed by:	<u>кк</u>		
Proj	ject Location: <u>590 Arg</u>							Started:	17 Feb 23	_ Date C	completed: 17 Fe	eb 23	Revision No.:	<u>0, 10/4/23</u>			
	LITHOLOGY PROFILE				MPLI	NG			FIELD	TESTING	★ Rinse p	B TESTING	z				
gy Plot	DESCRIPTION		e Type e Number ery (%)		ery (%)	√' Value/RQD%	(m) H	ATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould	ationTesting ● DCPT Nilcon Vane* ◆ Intact ◆ Remould	2 4 6 8 10 12 Soil Vapour Reading A parts per million (pm) 10 20 300 400 Lower Explosive Limit (LEL) W _P W W H H			COMMENTS			
Litholo	Geodetic Ground Surface Elevation: 105.04 m		And the second s			SPT 'N	DEPT	ELEV	* Undrained SI 20 40	near Strength (kPa) 60 80	Plastic Liquid Z Z						
	ASPHALI PAVEMENT 100 mm granular base FILL: silty clay/clayey si gravel, trace oxidization, shale fragments, reddish stiff	t, trace sand, trace t, trace organics, trace brown to grey, moist,	SS	1	59	11	-	-	0		o ⁵						
			SS	2	51	8	- - - 1 -	104 -	0		o ²²						
	SILTY CLAY/SHALE Co trace gravel, trace limes brown to grey, moist, ha	103.52 OMPLEX: trace sand, 1.5 tone fragments, reddish rd	SS	3	87	35	- - - - - - 2	103 -	0		o ¹³						
	BEDROCK: Shale, redd moist	ish brown to grey, 2.4	SS	4	64	50/13 cm	-	-	13 c	50 O m	o ¹¹						
			SS	5	56	50/2 cm	- 	102 —	2 0	50 .m	0 ⁸						
							-	-									
							4 	101 —									
			SS	6	100	50/8 cm	- - - - - 5		8 с	50 .m	o ¹¹						
							-										
		99.10					-	-									
BIG	End of Borehole due to Notes: 1. Borehole open upon of 2. Groundwater level revel revel pro- upon completion of drillin 3. Ground water level re March 23, 2023.	99.10 9 Auger Refusal 5.9 completion of drilling. ading at 4.57 m bgs rg. ading at 3.42 m bgs on	ater dep	th on cc	pmpletic	n of drill		4.57 m.									
12-5 Miss Cana	500 Tomken Rd. issauga, ON L4W 2Z4 ada	The second with the second with the second with the second	ater dep	th obse	rved on	3/23/2	2 <u>023</u> at	a depth	of: <u>3.42</u>	<u>m</u> .							
Califord - T: 416-214-4880 Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Notes to Record of Boreholes*. P												Scale: 1 : 53 age: 1 of 1					

RECORD OF BOREHOLE No. BH103																B.I.G. Consultive Inc	KS /						
Proj	Project Number: BIGC-ENV-554D							Drilling	g Locat	ion:	See	borehol	e loca	tion	Logged b	y:	FJ	_					
Proj	Project Client: Distrikt Capital Corporatio		orporation					_ Drilling Method:			150 mm Solid Stem Augering								Compileo	l by:	MM	_	
Proj Proj	Project Name: Phase II ESA and Supplementa Hydrogeological Investigations Project Location: 590 Argus Road, Oakville, ON			ry Geotechnical and					_ Drilling Machine: Date Started:			Truck Mounted Drill 17 Feb 23 Date Completed: 1'					ed: 17	Feb	23	Reviewee	d by: No.:	<u>КК</u> 0, 10/4/23	_
	LITHOLOGY PROFILE			so						FIFLD			ING										_
-ithology Plot	DESCRIPTION		Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	P O SP MTO \ ∆ Inta ▲ Rei * Undra 20	enetrat T Vane* act mould ined She	ionTes ● D Nilco ◇ Ir ● R ear Strer 60	sting DCPT In Vane* Intact Remould Ingth (kPa) 80	 ★ Rin 2 Sc △ par 100 ▲ Lov Wr Pla 20 	ise pH 4 6 il Vap ts per r 20 wer Exp stic 40	Values 3 8 iour Re nillion (p 0 300 losive L W 0 60	10 12 eading pm) 400 imit (LEL WL Liquid 80	2	NSTRUMENTATION NSTALLATION	СОМ	MEN	ſS		
_	ASPHALT PAVEMENT: 60 mm asphalt ov@04.75																						
	FILL: silty sand gravel, brown, m	, trace clay, trace to noist, loose	o some	SS	1	41	8	-	-	0	* * * * * * * * *	* * * * * * * * * * * * * *	* * * * *	o ¹²			* * * * *						
	SILTY CLAY/S	103.68 SILTY CLAY/SHALE COMPLEX: trace sand, 1.2		SS	2	67	6	- 1 	104 -	0	· · · · · · · · · · · · · · · · · · ·			o ¹⁸	8								
	trace gravel, trace limestone fragments, reddist brown to grey, moist, hard 102 BEDROCK: Shale, reddish brown to grey, moist			SS	3	59	50	- - - - - -	103 —		· · · · · · · · · · · · · · · · · · ·	0		o ¹⁰									
			102.61 wn to grey, 2.3	SS	4	80	50/10 cm	-	-		50 10 cn	0	•				* * * * * *						
	End of Borehol	9	<u>101.83</u> 3.1				50/2 cm	- - - 3	102 -		50 2 cn	0 0			· · · · · · · · · · · · · · · · · · ·								
	Notes: 1. Borehole oper drilling.	n and dry upon cor	npletion of								* * * * * * * *	* * * * * * * * * * * * * * * * * * *					* * * * * * * * *						
											* * * * * * * * * * * * * * *	* * * * * * * * *	•				* * * * * * * * * * * * * * * * * * * *						
											- - - - - - - - - - - - - - - - - - -						- - - - - - - - - - - - - - -						
													•										
											* * * * * * * * * *	* * * * * *	• • • • • • • • • • • • • • • • • • • •				* * * * *						
											8 4 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8						• • • • • •						
											5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						- - - - - - - - - - - - -						
											+ + + + + + + + + + +	+ + + + + + + + + + +	• • • • • •				* * * * * *						
											6 6 8 9 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9											
											* * * * * *	* * * * * *	•				* * * * *						
											* * * * * *	* * * * * *					• • • • • •						
B.I.C 12-5 Miss	5. Consulting Inc. 500 Tomken Rd. issauga, ON L4W 2	2Z4	$\frac{\nabla}{=}$ No freest	anding (groundv	vater me	asured	in oper	n boreha	le on co	ompletic	on of d	rilling.	•			*		1				
Cana T: 41 F: 41	aua 6-214-4880 16-551-2633	ole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was isioned and the accompanying Notes to Record of Boreholes'.													Scale: 1 : 53 Page: 1 of 1								
R		OF BORE		o. _	BH1	04								10	BILG. GONELATING								
-------------------------------	--	---	---	-----------------------------------	-----------------------------------	-------------------------------------	-------------------------------------	--------------------------------	------------------------------------	---	--	---	---------------------------------	---------------	------------------------------								
Proj	ect Number:	BIGC-ENV-554D							Drilling	g Location:	See boreho	le location plan		Logged by:	FJ								
Proj	ect Client:	Distrikt Capital C	orporation						Drilling	g Method:	150 mm So	olid Stem Augering		Compiled by:	MM								
Proj	ect Name:	Phase II ESA and	Supplementa	ary Geo	otechn	ical an	d		Drilling	g Machine:	Truck Moun	nted Drill		Reviewed by:	<u>кк</u>								
Proj	ect Location:	590 Argus Road,	Oakville, ON						Date	Started:	17 Feb 23	Date Completed: 17 Fe	eb 23	Revision No.:	<u>0, 10/4/23</u>								
	LITHO	LOGY PROFIL	E	SO	IL SA	MPLI	NG			FIELD	resting	LAB TESTING											
Lithology Plot	[Geodetic Ground	DESCRIPTION	04.91 m	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetral O SPT MTO Vane* △ Intact ▲ Remould * Undrained She 20 40	OCPT DCPT Nilcon Vane*		INSTRUMENTATION INSTALLATION	COMMEN	TS								
	ASPHALI PA 120 mm granu FILL: silty clay brown moist fi	vemen1: 50 mm as ar base , trace sand, trace g	phalt ov ¢ 04.76 <u>0.</u> 2 ravel,	°0	1	5	0	-				13											
	FILL: silty san		<u>104.15</u>	55	1	5	8	-				0											
	gravel, some re brown to grey,	eddish brown shale f moist, compact	ragments,	SS	2	54	10	- 	104 —	0		08											
	SILTY CLAY/S trace gravel, tra brown to grey,	SHALE COMPLEX: t ace limestone fragme moist, hard	103.39 race sand, 1.5 ents, reddish	SS	3	70	43	- - - - 2	103 -	0		o ⁹											
XX	BEDROCK: St	nale, grey, moist	<u>102.62</u> 2.3	SS	4	100	50/8 cm	-	-	5 8 cr) 0												
	End of Boreho	le due to Auger Re	102.17 fusal 2.7					_			+ + + + + + + +		-										
	End of Boreho Notes: 1. Borehole op drilling.	en and dry upon con	fusal 2.7																				
B.I.G 12-5 Missi	. Consulting Inc. 500 Tomken Rd. issauga, ON L4W	2Z4	$\frac{\nabla}{=}$ No freest	anding g	groundw	vater me	asured	in oper	n boreho	ele on completion	on of drilling.												
Cana T: 41 F: 41	ada 6-214-4880 6-551-2633		Borehole details from a qualified 0 commisioned and	as prese Seotechn d the acc	nted, do iical Engi ompanyi	not const ineer. Als ng'Notes	itute a th o, boreho to Recor	orough ble infor d of Bo	understa mation sl reholes'.	nding of all poter hould be read in o	tial conditions pr conjunction with t	resent and requires interpretative a the geotechnical report for which it	ssistance was	Pa	Scale: 1 : 53 age: 1 of 1								

RECORD OF BOREHOLE No. BH/MW105 Project Number: BIGC-ENV-554D Drilling Location: See borehole location plan Logged by: FJ														B.I.G. Consultive					
Proj	ect Number: BIGC-ENV-554D		Drilling	g Loca	ation:	Se	e borehol	e locatio	on plan				_ Logged by:	FJ					
Proj	ect Client: Distrikt Capital Cor	poration						Drilling	g Meth	nod:	1	50 mm So	lid Stem	Auger	ing			_ Compiled b	y: <u>MM</u>
Proj	ect Name: Phase II ESA and S Hydrogeological Inv	upplementa vestigations	ary Geo S	otechn	ical an	nd		Drilling	g Mac	hine:	Tr	uck Mount	ted Drill					_ Reviewed b	y: <u>KK</u>
Proj	ect Location: 590 Argus Road, Oa	akville, ON						Date S	Starte	d:	11	Mar 23	_ Date (Comple	eted: 1 N	/lar 2	23	Revision No	o.: <u>0, 10/4/23</u>
	LITHOLOGY PROFILE		SC	IL SA	MPLI	NG			F	IELD	TES	STING	LA ★ Rinse	B TES	TING		z		
				ū		RQD		Ê	o s	Penetr PT	ation⊺ ●	Testing DCPT	2 4 Soil	6 8 √apour l	8 10 12 Reading		N N		
/ Plot	DESCRIPTION		Type	qmnN	y (%)	Value	Ê	NOL	MTC	Vane'	* Ni ♦	lcon Vane*	100 ▲ Lower	200 3 Explosive	00 400 Limit (LEL)	MEN1 -ATIO	COMIN	
holog			mple	mple	cover	N. L	PTH	EVAL	▲ R *Und	emould rained S	♦ hear S	Remould trength (kPa)	W _P ■ Plastic		€ Liquid		STRU		
Lit	Geodetic Ground Surface Elevation: 104. ASPHALT PAVEMENT: 40 mm asph	96 m alt ov ¢ 04.81	Sa	Sa	Ř	R	_ <u> </u>		2	<u>20 4</u> (06	0 80 /	2 <u>0</u>	40 6	50 80	=	ZZ		
	150 mm granular base FILL: silty clay, some sand, trace to s	<u>0.</u> 2			_			-					6		· · ·	7	T: (T,T)		
	gravel, trace shale fragments, trace of odour, black to dark brown, moist, firm stiff	i to very	SS	1	70	8	E	-					0-		· · ·				
							-	104 -				• • • • • •	47		• • • • • • • • • • • • • • • • • • •				
			SS	2	41	7	-		0			· · · · · · · · · · · · · · · · · · ·	0,17		· · · · · · · · · · · · · · · · · · ·				
							- -	-		· · ·					• • • • • •				
	SILTY CLAY/SHALE COMPLEX: trac	103.28 ce sand, 1.7	SS	3	70	28	Ē	-		0		• • • • • •	o ²		· · · · · · · · · · · · · · · · · · ·				
moist, very stiff to hard																			
						50/10		-		· · ·	50	6 6 7 7 6 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8			· · ·				
102.37 SS 4 77 50/13 cm - 50 13 cm o ¹³ · · </td <td></td>																			
BEDROCK: Shale, grey, moist 2.6 2.6 3.102 - 1.3 Cm																			
SS 5 52 50/10 cm 50 10 cm 50 10 cm																			
SS 5 52 50/10 - 3 102 - 50 50 50 50 50 50 50 50 50 50 50 50 50																			
							-	-				• • • • • •		•	· · · · · · · · · · · · · · · · · · ·				
							- 4	101 -				· · · · · · · · · · · · · · · · · · ·							
							E	-				· · ·			· · ·	-			
							F	-	1			· · ·		•	· · · · · · · · · · · · · · · · · · ·				
							-	100 -				· · ·			· · ·	ŀ			
							- 5	-								<u> </u>			
							-	-							· · · · · · · · · · · · · · · · · · ·				
							-	-				· · ·			· · ·				
		98.86					- 6	99 -											
	End of Borehole	6.1										• • •			· · ·				
	 Borehole open upon completion of Groundwater level reading at 5.49 r 	drilling. n bgs										· · ·			· · ·				
	upon completion of drilling. 3. Ground water level reading at 4.28	m bgs on										• • • • • •			• • • • • • • • • • • • • • • • • • •				
	WINTER 23, 2023.											• • •							
										· · · · · · · · · · · · · · · · · · ·		. 4 6 8 7 8 8 8 8 8			· · · · · · · · · · · · · · · · · · ·				
										· · ·					· · · · · · · · · · · · · · · · · · ·				
									1			• •			· · ·				
												• • • • • •			· · ·				
												· · ·		•	· · ·				
									1			· · ·			· · ·				
												- 4 • • • • • •			· · · · · · · · · · · · · · · · · · ·				
										· · ·		· · ·		:	· · · · · · · · · · · · · · · · · · ·				
												· · ·			· · ·				
BIC	Consulting Inc								<u> </u>										
12-5 Miss	500 Tomken Rd. issauga, ON L4W 2Z4	≚ Groundwa	ater dep	th on co		on of dril	ling: 2022 c	<u>5.49 m</u> .	of	1 20	m								
Cana T: 41	ada 6-214-4880 B	orehole details	as prese	nted, do	not cons	titute a th	<u>∠∪∠</u> 3a norough	understa	nding o	<u>+.∠o</u> fall pot	ential o	conditions pre	esent and re	equires in	iterpretativ	e assi	istance		0
г: 41	0-001-2000 fm cc	om a qualified (ommisioned and	Geotechn d the acc	ical Engi ompanyi	ineer. Als ng'Notes	so, boreh s to Reco	ole infor rd of Bo	rmation sh reholes'.	nould be	e read in	n conju	unction with th	ne geotechr	nical repo	rt for whic	h it wa	35		Scale: 1 : 53 Page: 1 of 1

RECORD OF BOREHOLE No. BH/MW106 Project Number: BIGC-ENV-554D Drilling Location: See borehole location plan Logged by: FJ														B.LG. Consultive			
Proj	ect Number: BIGC-I	ENV-554D						Drilling	Location	: <u>S</u> e	ee borehol	e locatio	n plan			Logged by:	FJ
Proj	ect Client: Distrik	t Capital Corporation						Drilling	Method:	1	50 mm So	lid Stem	Augerir	ıg		_ Compiled by:	MM
Proj	ect Name: Phase	II ESA and Supplementa geological Investigations	ary Geo s	otechn	ical ar	nd		Drilling	Machine	: <u>Tr</u>	ruck Moun	ted Drill				Reviewed by:	<u>кк</u>
Proj	ect Location: 590 Ar	gus Road, Oakville, ON						Date	Started:	<u>1</u>	Mar 23	_ Date C	Complete	ed: <u>1 Ma</u>	r 23	Revision No.:	<u>0, 10/4/23</u>
	LITHOLOG	Y PROFILE	SC	IL SA	MPLI	NG			FIEL	D TE	STING			ING	-		
				L.		RQD%		Ê	Pene	tration	Testing	2 4 Soil V	6 8 apour Re	10 12 eading			
Plot	DESC	RIPTION	ype	Iumbe	(%)	alue/F	Ê	NO	MTO Var	ie* N	ilcon Vane*	△ parts p 100	er million (p 200 300 Explosive I	pm) 400 imit (LEL)	AENT	COMMEN	ITS
ology			nple T	nple N	overy	, z	PTH (EVATI	A Intact ▲ Remou	ld 🍝	Remould	W _P	W	W _L	TALL		
Lith	Geodetic Ground Surface	Elevation: 105.13 m	Sar	Sar	Rec	Ъ	DE		" Undrained 20	40	5trengtn (kPa) 60 80	Plastic 20	40 60	Liquid 80	의 문의		
***	120 mm granular base FILL: silty sand, some	e clavev silt. trace gravel.					Ē	105 -		•	· · ·						
	trace oxidization, redd compact to dense	ish brown, moist,	SS	1	70	12	Ē	-	0	•	· · ·	o ¹¹					
		104.22					È										
	SILTY CLAY/SHALE trace gravel, trace lime	COMPLEX: trace sand, 0.9 estone fragments, reddish	SS	2	70	48	- 1 -	104 -		0	· · · · · · · · · · · · · · · · · · ·	o ¹⁴		····;···· :			
	brown to grey, moist, r	lard					F			•	* * * * * * *	-	· · ·	*			
							Ē			•	· · ·	6					
			SS	3	70	61	- 2				0	0 ⁰					
		102.84					Ē	103 -		50							
	BEDROCK: Shale, red moist	ddish brown to grey, 2.3	SS	4	65	50/5 cm	F	-		5 cm	· · ·	o ⁶					
SS 5 100 50<																	
SS 5 100 50/13 3 50 5																	
							-			•	· · ·			•			
							-				· · ·						
							4 	101 -			· • • • • • • • • • • • • • • • • • • •						
							-	-									
							Ē	-			· · ·						
							- 5	-									
								100 -		•	* * * * * *	-	· · ·	*			
							-				· · ·			:			
							Ē			•	· · ·						
	Frid of Dominate	99.03					- 6										
	End of Borehole	6.1									· · ·						
	1. Borehole open upor 2. Groundwater level r	n completion of drilling. reading at 3.05 m bgs								•	• • • • • •			*			
	upon completion of dri 3. Ground water level	illing. reading at 2.46 m bgs on									· · ·						
	March 23, 2023.													:			
										•	· · ·			•			
											· · ·		· · ·	*			
											• • • • • •			:			
										•	· · · · · · · · · · · · · · · · · · ·						
											· · ·						
										•	· · ·		· · ·				
										*	· · · · · · · · · · · · · · · · · · ·			•			
										- 	· · ·			-			
										•	· · · · · · · · · · · · · · · · · · ·			•			
											· · ·			-			
B.I.G	6. Consulting Inc.	∑ Groundwa	ater dep	oth on c	ompletic	n of dril	ling:	<u>3.05 m</u> .	•				,				
IZ-5 Missi Cana	issauga, ON L4W 2Z4 ada	- Groundwa	ater dep	oth obse	erved or	3/23/2	<u>2023</u> a	t a depth	of: <u>2.4</u>	<u>6 m</u> .							
T: 41 F: 41	6-214-4880 6-551-2633	Borehole details from a qualified (as prese Geotechn	nted, do lical Eng	not cons	titute a th	orough	understa	nding of all p nould be read	otential I in coni	conditions pre	esent and re	quires inte cal report	rpretative a for which if	ssistance was		Scale: 1 : 53
		commisioned and	d the acc	ompanyi	ng'Notes	to Reco	rd of Bo	oreholes'.		_ 0.1		0				P	age: 1 of 1

R	ECORD	OF BOREHOLE N	lo.	<u>BH/</u>	MW	<u>107</u>									10	B.LG. Gordsutting
Proj	ect Number:	BIGC-ENV-554D						Drilling	J Location:	See boreho	le locatio	n plan			Logged by:	FJ
Proj	ect Client:	Distrikt Capital Corporation						Drilling	g Method:	150 mm S	olid Stem	Augering			_ Compiled by:	<u>MM</u>
Proj	ect Name:	Phase II ESA and Supplement Hydrogeological Investigation	tary Ge าร	otechn	nical ar	nd		Drilling	g Machine:	Truck Mou	nted Drill				_ Reviewed by:	<u>кк</u>
Proj	ect Location:	590 Argus Road, Oakville, ON						_ Date \$	Started:	17 Feb 23	Date C	Completed	: <u>17 Fe</u>	eb 23	Revision No.:	<u>0, 10/4/23</u>
	LITH		SC	DIL SA	AMPLI	NG			FIELD	TESTING	LAE ★ Rinse p	B TESTIN OH Values	IG	z		
				er		RQD		Ē	Penetra O SPT	tionTesting DCPT	2 4 Soil V	6 8 1 apour Read	0 12 ding	N	COMMEN	те
/ Plot		DESCRIPTION	Type	Mumb	y (%)	Value	Ê	NOL	MTO Vane* ∆ Intact	Nilcon Vane ◇ Intact	100 ▲ Lower	200 300 Explosive Limi	400 t (LEL)	ATIO	COMINEN	15
holog			umple	umple	scover	N' T	PTH	EVA]	Remould * Undrained Sh	 Remould ear Strength (kPa 	W _P ■ Plastic		W _L —● iquid	STRU		
Lit	Geodetic Groun	d Surface Elevation: 104.65 m AVEMENT: 50 mm asphalt ov@04.50	Š	Š	ž	5	- <u>8</u>		20 40 : :	60 80	20	40 60	80	ZZ BIB		
	110 mm gran FILL: silty sa	ular base 0.3 nd, trace gravel, trace				_	-			· · ·		· · ·		1		
	moist, loose t	o compact	55		51	5	-	104 -		· · ·			•			
		103.74 SHALE COMPLEX: trace sand 0.9					E 1			· · · · · · · · · · · · · · · · · · ·						
	trace gravel, brown to grey	race limestone fragments, reddish , moist, very stiff to hard	SS	2	84	27	- '		0	· · ·	013					
							Ę			50		· · ·				
	BEDROCK:	102.97 Shale, reddish brown to grey, 1.7	SS	3	54	50/13 cm	Ē	103 -	13 c	ñ m	o ¹⁴	· · ·	*			
	moist						- 2					· · · · · · · · · · · · · · · · · · ·	•••••••••			
			SS	4	56	50/2	È			i0		· · ·				
							E	102 -	2 c	m		· · ·	•			
						50/0	Ē			50		· · ·	•			
				5	100	<u>50/2</u> cm	- 3		2 c	O m						
							Ē									
							Ē	101 -		· · ·		· · ·	•			
							- 4									
							F			· · ·		· · ·	•			
				6	100	50/2 cm	Ę	100 -	20			· · ·	•			
							-					· · ·	•			
							- 5 -			•••••						
							-			• • • • • •		· · ·	•			
							-	99 -		· · ·		· · ·	•			
		98.55					- 6									
	End of Borel	nole 6.4								· · ·		· · ·	•			
	1. Borehole c 2. Groundwa	pen upon completion of drilling. er level reading at 4.27 m bgs							· · ·	• • • • • •		· · ·	•			
	upon comple	ion of drilling.										· · ·				
										· · ·		· · ·	•			
										· · ·		· · ·	•			
										· · ·			•			
										· · ·		· · ·	•			
									· · ·	• • •			•			
										· · ·		· · ·	•			
										· · ·			•			
										· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	•			
	0	I										* * * *	*			
8.1.0 12-5 Miss	 Consulting In 500 Tomken Rd issauga, ON L4¹ 	C. V 2Z4	water de	oth on c	ompleti	on of dril	ling:	<u>4.27 m</u> .								
T: 41	6-214-4880 6-551-2633	Borehole detail	s as prese Geotech	ented, do	not cons	stitute a th	norough ole info	understa	nding of all pote	ntial conditions p	resent and re the geotechni	quires interprical report for	etative a	ssistance was		Scale: 1 : 53
		commisioned a	nd the acc	company	ing'Note:	s to Reco	rd of Bo	oreholes'.		,					Pa	age: 1 of 1

R	ECORD OF BOREHOLE N	0.	<u>BH/</u>	MW	<u>108</u>													B.L.	G.
Pro	ect Number: BIGC-ENV-554D						Drilling	g Locati	on: <u>s</u>	See bor	ehol	e location	plan			Logged by	y:	FJ	
Pro	ect Client: Distrikt Capital Corporation						Drilling	g Metho	d: _	200 mm	n Ho	llow Stem	Augerin	g		Compiled	by:	MM	
Pro	ect Name: Phase II ESA and Supplementa		Drilling	g Machi	ne:]	ruck M	oun	ted Drill				Reviewed	l by:	КК					
Pro	ect Location: 590 Argus Road, Oakville, ON						Date	Started:	2	7 Feb 2	23	_ Date Co	mpleted	28 Fe	eb 23	Revision	No.:	0, 10/4	/23
	LITHOLOGY PROFILE	SC	DIL SA	MPLI	NG			FIE	ELD TE	STING	3	LAB	TESTIN	IG					
					:QD%		Ê	Pe	enetratio	nTesting		★ Rinse pH 2 4 Soil Va	Values 6 8 10 pour Read) 12 ling					
Plot	DESCRIPTION	ype	nmbe	(%)	alue/F	Ê	NO	MTO V	/ane* I	Nilcon Va	ane*	△ parts per 100 20	million (ppm) 0 300	400		COM	/EN1	ſS	
logy		ple T	ple N	overy	, N	TH (TAV	∆ Inta ▲ Ren	ct < nould •	 Intact Removing 	uld	▲ Lower Ex W _P	W O		TRUN TALL/				
Litho	Geodetic Ground Surface Elevation: 104.51 m	Sam	Sam	Rec	SPT	DEP	ELE	* Undrai 20	ned Shear 40	Strength (60 80	kPa))	Plastic 20 4	0 60 L	iquid 80	SZ SZ				
***	ASPHALT PAVEMENT: 70 mm asphalt ov¢04.36 170 mm granular base 0.2					Ē						21		•	i i				
	limestone fragments, black, moist, loose to compact	SS	1	46	8	Ē	104 -	0				021							
	103.43				40														
	SILTY CLAY/SHALE COMPLEX: trace sand, 1.1 trace gravel, trace limestone fragments, reddish	- 55	2	04	10	Ē				· · ·		0.							
	brown to grey, moist, very stiff to hard					Ē	103 -		:										
		SS	3	67	31	- 2			0			o ¹²							
XX	102.22				50/5	Ē			50										
	very poor to excellent quality, trace limestone inclusion reddish brown to grey moist	SS	4	50	cm	Ē	102 -		5 cm	: :									
	indución, rodulon brown to groy, molet				50/2	- 2													
			5	100	cm				2 cm										
						Ē	101 -		•						Y				
						Ē,													
						4 													
						E	100 -		:	: :									
	ROCK CORING START	RC	1	100	50	Ē			i O	· · ·									
	- Pool Quality					5 													
				100		Ē	99 -		•	· · ·									
	- Very Poor Quality	RC	2	100	17	Ē			:										
						- 6 -			•••••										
						Ē	98 -												
						Ē			:										
	- Good Quality	RC	3	100	83	7 -				Ċ	 С								
						Ē	97 -		•	· · ·									
						-			:										
						- 8 -			•••••			• • • • • • • • • • • • •							
						Ē	96 -			· · ·									
	- Poor Quality	RC	4	88	36	Ē			0										
						- 9 -			•••••••••••••••••••••••••••••••••••••••										
						Ē	95 -		* * *			-		•					
						E								:					
		RC	5	100	82	- 10 -				Ċ	 >								
	- Good Quality					Ē	94 -		* * *	· · ·									
						Ē													
						E 11			•••••						[]目]				
						Ē	93 -		:						目				
	- Good Quality	RC	6	100	79	Ē			•	0					目				
B.I.G	3. Consulting Inc.	ater der	 http://www.com	ompletic	n of dril	<u>Г_12</u> ling:	N/A m	1 :	:	: :									
12-5 Miss	500 Tomken Rd. issauga, ON L4W 2Z4	ater der	oth obse	erved on	3/23/	y. 2023 a	t a depth	ı of:	3.57 m.										
Can T: 41	ada <u>= Groundwi</u> 16-214-4880 Borehole details	as prese	ented, do	not cons	titute a th	norough	understa	nding of a	Il potentia	al conditio	ns pre	esent and requ	ires interpr	etative as	ssistance				
r:4'	from a qualified (commisioned and	Geotechr d the acc	nical Eng companyi	ineer. Als ing'Notes	o, boreh to Reco	ole info rd of Bo	rmation s reholes'.	nould be r	ead in co	njunction	with th	ne geotechnica	al report for	which it	was		S Pa	uale:1 de:1 d	. თ. of 3

RE	RECORD OF BOREHOLE No. BH/MW108 roject Number: BIGC-ENV-554D Drilling Location: See borehole location plan Logged by:													
	LITHOLOGY PROFILE	sc	DIL SA	MPLI	NG				ESTING	LAB TESTING				
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetrati O SPT MTO Vane* △ Intact ▲ Remould * Undrained She 20 40	DCPT Nilcon Vane*		INSTRUMENTATION INSTALLATION	COMMENTS		
	BEDROCK: Shale, highly weathered to fresh, very poor to excellent quality, trace limestone inclusion, raddish brown to gray, maint					-								
	- Good Quality	RC	7	100	79	13	92		Ó					
	- Fair Quality	RC	8	100	68	- 15	90 -		0					
	- Excellent Quality	RC	9	100	93	- 16 - 16 	88 -		0					
	- Excellent Quality	RC	10	100	98	- 18	87 -		, ,	×				
	- Excellent Quality	RC	11	100	97	19	85 -		c					
	- Excellent Quality	RC	12	100	98	- - - - - - 21 - -	84 - 83 -		(×				
	- Good Quality	RC	13	100	89	22	82 –		0					
	- Excellent Quality	RC	14	100	93	24	81 – 80 –							
						- 25								
	- Excellent Quality	RC	15	100	93	-	<u> 79 –</u>		0					
	Borehole details from a qualified commissioned an	as prese Geotechr d the acc	ented, do nical Engi companyi	not const neer. Als ng'Notes	titute a th o, boreho to Recor	orough i ble inforr rd of Bor	understa mation s reholes'.	anding of all potent hould be read in c	tial conditions pro- conjunction with the	esent and requires interpretative a he geotechnical report for which in	assistance t was	Scale: 1 : 63 Page: 2 of 3		

RECORD OF BOREHOLE No. <u>BH/MW108</u>													BLG.
Project Number: BIGC-ENV-554D Drilling Location: See borehole location plan Logged													
	LITHOLOGY PROFILE	SC	IL SA	MPLI	NG			FIELD	TESTING	LAB T	ESTING	_	
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained SI 20 40	AtionTesting DCPT Nilcon Vane* Intact Remould near Strength (kPa) 60 80		alues <u>8</u> 10 12 Dur Reading liion (ppm) <u>300</u> 400 osive Limit (LEL) W W _L € <u>€</u> Liquid 60 80	INSTRUMENTATION INSTALLATION	COMMENTS
	BEDROCK: Shale, highly weathered to fresh, very poor to excellent quality, trace limestone inclusion, reddish brown to gray, moist						-						
	- Good Quality	RC	16	100	84	27	78		o				
	- Excellent Quality	RC	17	100	98	28	76 -			c			
	- Excellent Quality 73.75 End of Borebole 30.8	RC	18	100	100		75			.Φ			
	Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading at 3.57 m bgs on March 23, 2023. Borehole details from a qualified i commissioned an	as prese Geotechn	Inted, do iical Engi	not constant	itute a th o, boreheit	orrough u	nderstation station st	nding of all pote	ntial conditions p	resent and requir the geotechnical	es interpretative ar	sistance was	Scale: 1 : 63

R	ECORD	OF BOREHC	DLE No	5. [BH/	MW	<u>109</u>													1	B.LG. Gondulting
Proj	ect Number:	BIGC-ENV-554D							Drilling	g Loca	ation:	See	e boreho	ole loo	ation	plan				Logged by:	FJ
Project Client: Distrikt Capital Corporation									Drilling	g Meth	nod:	20	0 mm H	ollow	Stem	Auge	ering			_ Compiled by:	MM
Proj	ect Name:	Phase II ESA and Sup Hydrogeological Inve	pplementa estigations	ry Geo	otechn	ical an	d		Drilling	g Mac	hine:	Tru	ick Moui	nted [Drill					Reviewed by	: <u>KK</u>
Proj	ect Location:	590 Argus Road, Oak	wille, ON						Date	Starte	d:	15	Feb 23	D	ate Co	omple	ted: 1	l6 Fe	b 23	Revision No.	<u>0, 10/4/23</u>
	LITH	OLOGY PROFILE		SC	IL SA	MPLI	NG			F	IELD	TES	TING	+		TES	TING	6	7		
					L		RaD%		Ê	0.5	Penetra PT	tionTe	DCPT	2	4 Soil Va	6 8 apour F	10 Readin	1 <u>2</u> q	ATION		
Plot		DESCRIPTION		ype	umbe	(%)	alue/F	Ê	NO	MTC	Vane*	Nilo	con Vane'		100 2	r million 00 30	(ppm) 0 40	0 EL)		COMME	NTS
ygolc				ple T	N əlqı	overy	> z	TH (VATI	∆ ir ▲ R	tact emould	ě	Intact Remould	_	W _P	W O	V	V _L	TALL		
Lith	Geodetic Groun	d Surface Elevation: 105.09	9 m	San	San	Rec	SPT	DEF	ELE	* Und 2	rained Sh 20 40	ear Str 60	rength (kPa)) 1	Plastic 20	40 6	Liqu 0 8	id 0			
****	140 mm gran	ular base	0.2					-	-					2	-						
	gravel, trace	organics, brown to reddish firm to hard	lace	SS	1	70	7			0				p²	-						
	,				_		10	È 1		1											
				55	2	59	12		104 -			•			5.						
			103.41					È							:	-					
	SILTY CLAY trace gravel,	//SHALE COMPLEX: trace trace limestone fragments,	sand, 1.7 grey,	SS	3	70	34]	0				o ¹⁷						
	moist, hard		102.80					- 1	103 -				÷		-						
	BEDROCK: S poor to excel	Shale, highly weathered to lent quality, trace limestone	fresh, 2.3 e	SS	4	65	89/28 cm	-					:89 : O 28 cm		-						
	inclusion, gre	y, moist										•	20 0		-						
				SS	5	88	91/25	- 3	102 -				91								
					-		cm	Ē					25:cm		-						
	- Auger Grin	ding						-	-				•		-						
								- 4	101 -				•••••								
								-			· · ·	•	•								
															:						
								- 5 -	100 -			•••••	•••••								
								-													
															-						
								- 6 -	99 -												
	F	OCK CORING START						-				•	:		-						
								-							-	-					
	- Good Qual	ity		RC	1	100	77	E 7	98 -			• • • • •	• • • • •								
								È	-				•		-						
															-						
								- 8	97 -			•••••	• • • • • • •		• • • • • •						
				RC	2	100	12	Ē							-						
	- Poor Qualit	у		NO	2		72														
								- 9	96 -			•••••	· · · · · · · · · · · · · · · · · · ·								
			-					-													
												•									
	- Poor Quali	N .		RC	3	100	44	- 10	95 -		c)									
	i oor quan	y						-							-						
										1											
								E 11	Q4 -			•••••									
								È	54 -	1	· · ·	•				-					
	- Good Qual	itv		RC	4	100	87	F		1			0		:	-					
		-						F 12					:								
B.I.G 12-5 Miss	Consulting In 500 Tomken Rd issauga, ON L4 ¹	c. 5 N 2Z4	C Groundwa	iter dep	ith on co	ompletic	n of dril	ling: 2023 at	<u>N/A m</u> .	of:	17 43	m									
Cana T: 41	ida 6-214-4880	Bon	ehole details a	as prese	nted, do	not cons	titute a th	lorough	understa	nding o	f all pote	ntial co	onditions p	resent	and rea	uires int	erpreta	ative as	ssistance		.
F: 41	v-551-2633	fron com	n a qualified G nmisioned and	eotechn the acc	ical Engi ompanyi	ineer. Als ng'Notes	o, boreh to Recor	ole infor rd of Bo	mation s reholes'.	hould b	e read in	conjur	nction with	the geo	technic	al repor	t for wi	hich it	was		Scale: 1 : 63

RE	CORD OF BOREHOLE N	o.	BH/	MW	<u>109</u>							B.I.G. GONERATING
Proje	ect Number: BIGC-ENV-554D						Drilling	g Location: <u>See</u>	e borehole	e location plan	Logged b	y: <mark>FJ</mark>
Lithology Plot	LITHOLOGY PROFILE	Sample Type	Sample Number	Kecovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	FIELD TES PenetrationTe O SPT ● MTO Vane* Nilc △ Intact ◇ Remould ◆ * Undrained Shear Str 20 40 60	TING esting DCPT on Vane* Intact Remould ength (kPa) 80	LAB TESTING 2 4 6 10 12 Soil Vapour Reading 100 200 300 400 Lower Explosive Limit (LEL) Wp W W_L Plastic Liquid 20 40 60 80	INSTRUMENTATION INSTALLATION	MENTS
	BEDROCK: Shale, highly weathered to fresh, poor to excellent quality, trace limestone inclusion, grey, moist											
	- Good Quality	RC	5	100	84	13	92 -		o			
	- Good Quality	RC	6	100	76	14	91 - 90 -		O:			
	- Excellent Quality	RC	7	100	94	16	89 -		0			
	- Good Quality	RC	8	100	85	— 17 — — 18	88 -		0		Y =	
	- Excellent Quality	RC	9	100	98	19	86 -		0	× · · · · · · · · · · · · · · · · · · ·		
	- Excellent Quality	RC	10	100	100	20	85 — 84 —)		
	- Excellent Quality	RC	11	100	100	22	83 -			þ		
	- Weak Strength - Excellent Quality	RC	12	100	95	24	81 -		0		UCS: 16.9 MPa	
	- Excellent Quality	RC	13	100	100	- 25 - 25 	80 -	nding of all potential or) sent and requires intervetative se	sistance	
	from a qualified (commisioned an	Geotechr d the acc	nical Engi companyi	neer. Als ng'Notes	o, boreho to Recor	ble inform d of Bor	nation sl eholes'.	hould be read in conjur	nction with the	he geotechnical report for which it v	vas	Scale: 1 : 63 Page: 2 of 3

٦.

RECORD OF BOREHOLE No. <u>BH/MW109</u>													BLG. CONSULTING
Proj	ect Number: BIGC-ENV-554D		Logged by: FJ										
	LITHOLOGY PROFILE	SC	DIL SA	MPLI	NG %			FIELD	TESTING	LA * Rinse	B TESTING	z	
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained St 20 40	DCPT Nilcon Vane ⁴ Intact Remould mear Strength (kPa) 60 80	2 4 Soil △ parts 100 ▲ Lower W _P ■ Plastir 20	6 8 10 12 Vapour Reading per million (ppm) 200 300 400 r Explosive Limit (LEL) W WL O O 0 0 c Liquid 40 60 80	INSTRUMENTATIC INSTALLATION	COMMENTS
	BEDROCK: Shale, highly weathered to fresh, poor to excellent quality, trace limestone inclusion, grey, moist					- 26	-						
	- Excellent Quality	RC	14	100	100	27	79			0			
	- Excellent Quality	RC	15	100	100	28	77			0			
	- Excellent Quality 74.38	RC	16	100	100	- 30	75 -						
	74.38 End of Borehole 30.7 Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading at 17.43 m bgs on March 23, 2023.	as prese Geotechr	nted, do iical Engi	not const	itute a th o, borehol		- - - - -	nding of all pote	ntial conditions p	resent and r	equires interpretative a nical report for which it	ssistance	Scale: 1 : 63

RI	ECORD	OF BOREHOLE I	No.	<u>BH/</u>	'MW	/110								10	B.I.G. Consulting
Pro	ject Number:	BIGC-ENV-554D						Drilling	g Location:	See boreho	le location	plan		Logged by:	<u>FJ</u>
Pro	ect Client:	Distrikt Capital Corporation						Drilling	g Method:	200 mm H	ollow Stem	Augering		Compiled by:	MM
Pro	ect Name:	Phase II ESA and Supplement	ntary Ge	otechr	nical ar	nd		Drilling	g Machine:	Truck Mou	nted Drill			Reviewed by:	<u>кк</u>
Pro	ect Location:	590 Argus Road, Oakville, O	N					Date	Started:	10 Feb 23	Date Co	mpleted: 13 Fo	eb 23	Revision No.:	<u>0, 10/4/23</u>
	LITH	OLOGY PROFILE	SC	DIL SA	MPLI	NG			FIELD	TESTING	LAB	TESTING			
						QD%		-	Penetra	tionTesting	★ Rinse pH 2 4	Values 6 8 10 12	NOL		
lot		DESCRIPTION	e	Imber	(%)	lue/R	Ê	L) NO	O SPT MTO Vane*	 DCPT Nilcon Vane³ 	△ parts per 100 20	million (ppm) 0 300 400	TION	COMMEN	TS
logy F			ole Ty	ole Nr	very ('N' Va	TH (n	ATIC	 △ Intact ▲ Remould 	♦ Intact♦ Remould	▲ Lower Ex W _P	plosive Limit (LEL) W W _L	ALLA		
Litho	Geodetic Groun	Surface Elevation: 105.30 m	Sam	Sam	Reco	SPT	DEP'	ELEV	* Undrained Sh 20 40	ear Strength (kPa 60 80) Plastic 20 4	Liquid 0 60 80	INST		
***	ASPHALT P. 240 mm gran	AVEMENT: 60 mm asphalt ov ¢ 05.1 ular base 0.	5 7				Ē	105 -		• •			문화, 문화, 신문, 신문,		
	FILL: clayey gravel, trace	silt, some sand, trace to some imestone fragments, brown to	SS	1	62	7	Ē		0	· · ·	o ²⁴				
	grey, iirri to v	104.2	3				Ē,			· · ·	12				
Ĩ	SILTY CLAY	SHALE COMPLEX: trace sand, 1.	1 SS	2	33	25		104 -	0		012				
	containing co	bbles and boulders, reddish , moist, very stiff to hard								• • • • • •					
			SS	3	33	65	Ē,			0					
		103.0	1			50/8	Ē	103 -	5	0					
	BEDROCK: S poor to excel	Shale, highly weathered to fresh, 2. ent quality, trace limestone	3 55	4	6.3	cm	Ē	105	8 ci	n					
	inclusion, rea	aish brown to grey, moist					Ē			· · ·					
			SS	5	80	50/10 cm	3 	400	5	0					
							Ē	102 -							
							Ē			• •			Y		
							- 4 -						_		
							Ē	101 -		0					
			SS	6	80	50/10 cm	Ē		10 ci	o n					
							- 5				· · · · · · · · · · · · · · · · · · ·				
							-	100 -		• • • • • •					
							Ē								
	- Highliy We	athered/Clayey Zone					6								
			SS	7	46	25	-	99 -	0	• •	o ¹⁶				
							F			· · ·					
							7 				· · · · · · · · · · · · · · · · · · ·				
							Ē	98 -		0					
			SS	8	100	50/10 cm	ŧ		10 ci	o n					
	R	OCK CORING START					E 8								
			RC	1	100	18		97 -							
	- Poor Qualit	y		'	100	-0	-								
							- 9 -								
							Ē	96 -		· · ·					
							-			• • •					
	- Poor Qualit	y	RC	2	100	46	- 10)					
							E	95 -		· · ·					
							ŧ								
							- 11			••••					
							Ē	94 -							
	- Poor Qualit	у	RC	3	100	48	È			J					
BIO	. Consulting In	c					<u>⊦ ₁₂</u>			• •					
12-5 Miss	500 Tomken Rd issauga. ON L 4	W 2Z4 ✓ Ground ✓ Ground	iwater de	pth on c	ompletio	on of dril	lling:	<u>N/Am</u> .	of and	2					
Can T: 41	ada 6-214-4880		iwater de	ented. do	not cons	titute a #	<u>2023</u> al	understa	nding of all pote	i. Itial conditions r	resent and recu	ires interpretative a	assistance		
F: 4′	6-551-2633	from a qualifie commisioned	d Geotech and the acc	nical Eng	ineer. Als	so, boreh s to Reco	ole infor	mation s reholes'.	nould be read in	conjunction with	the geotechnica	I report for which i	twas	P:	Scale: 1 : 63

Continued on Next Page

RE	CORD OF BOREHOLE N	B.I.G. Consultive										
Proje	ect Number: BIGC-ENV-554D	Logged by: FJ										
1	LITHOLOGY PROFILE	SC	IL SA	MPLI	NG			FIELD	TESTING	LAE	B TESTING	z
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Sh 20 40	tionTesting ● DCPT Nilcon Vane* ◇ Intact ● Remould tear Strength (kPa) 60 80	A later 2 4 Soil V △ parts p 100 ▲ Lower 1 W _p Plastic 20	A reaction 10 12 6 8 10 12 'apour Reading er million (ppm) 20 300 400 Explosive Limit (LEL) W W U 0 40 6 80	
	BEDROCK: Shale, highly weathered to tresh, poor to excellent quality, trace limestone inclusion, reddish brown to grey, moist						93 —					
	- Good Quality	RC	4	100	83	- 13	92 —		0			
	- Good Quality	RC	5	100	87	- 14 	91 —		0			
	- Excellent Quality	RC	6	100	98	- - - - - - - - - - - - - - - - - - -	90					
	- Excellent Quality	RC	7	100	100	- 17 - 17 	88 -			Þ		
	- Excellent Quality	RC	8	100	100	- - - - - - - - - - - - - - - - - - -	86			þ	· · · · · · · · · · · · · · · · · · ·	
	- Excellent Quality	RC	9	100	95	20	85		c			
	- Excellent Quality	RC	10	100	97	22	83 -		c			
	- Weak Strength - Excellent Quality	RC	11	100	95	23	82		с			UCS: 18.3 MPa
	- Excellent Quality	RC	12	100	97	- - - - - - -	80 -		(
	Borehole details from a qualified (commisioned an	as prese Geotechr d the acc	nted, do i ical Engi ompanyi	not const neer. Als ng'Notes	o, boreho to Recor	orough u ole inforn rd of Bor	understan nation st eholes'.	noung of all pote lould be read in	nual conditions pr conjunction with t	esent and re ne geotechni	quires interpretative a ical report for which it	was Scale: 1 : 63

٦

Г

RECORD OF BOREHOLE No. <u>BH/MW110</u>												
Proj	ect Number: BIGC-ENV-554D					C	Drilling	Location: See b	orehole	location plan		Logged by: FJ
	LITHOLOGY PROFILE	SC	DIL SA	MPLI	NG %			FIELD TESTI	NG	LAB TESTING	z	
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD	DEPTH (m)	ELEVATION (m)	Penetration lesti O SPT ● DC MTO Vane* Nilcon △ Intact ◇ Inta A Remould ● Re * Undrained Shear Streng 20 40 60	ng PT 2 Vane* (ct mould th (kPa) 80	2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 Lower Explosive Limit (LEL) Wp W W W Plastic Liquid 20 40 60 80 80 10 12	INSTRUMENTATIC INSTALLATION	COMMENTS
	BEDROCK: Shale, highly weathered to fresh, poor to excellent quality, trace limestone inclusion, reddish brown to grey, moist					- 26	-					
	- Excellent Quality	RC	13	100	100	27	79		0	·		
	- Good Quality	RC	14	100	83	28	77 -		o			
	- Excellent Quality	RC	15	100	95	30	76		0			
	The of Borehole 30.7 Notes: 30.7 2. Ground water level reading at 3.84 m bgs on March 23, 2023. 30.7						-					
	Borehole details from a qualified (commisioned an	as prese Geotechr d the acc	nical Engi companyi	not consi ineer. Als ng'Notes	otute a th so, boreho s to Recor	orough un ble informa d of Borel	derstar ation sh holes'.	oung of all potential cond ould be read in conjunction	n with the	e geotechnical report for which it	was	Scale: 1 : 63

E.

R	ECORD	OF BOREHOL	E No.	B	<u>H/I</u>	<u>ww</u>	<u>111</u>												10	BL	. G. NSULTING
Proj	ect Number:	BIGC-ENV-554D							Drilling	g Locati	on: <u>S</u>	ee boreho	le locatio	on plan				_ Logged b	oy:	FJ	
Proj	ect Client:	Distrikt Capital Corporat	tion						Drilling	g Metho	od:	200 mm Ho	bllow Ste	em Auge	ering			_ Compiled	d by:	MM	
Proj	ect Name:	Phase II ESA and Supple Hydrogeological Investig	ementary G pations	eote	chni	cal an	d		Drilling	g Machi	ne: <u>T</u>	ruck Moun	ted Drill					Reviewe	d by:	KK	
Proj	ect Location:	590 Argus Road, Oakvill	e, ON						Date	Started:	<u>1</u>	0 Feb 23	_ Date	Comple	ted: 15	Feb 23		Revision	No.:	<u>0, 10/4</u>	1/23
	LITHO		5	OIL	SA	MPLI	NG			FIE	ELD TE	STING	LA Binse	B TES	TING						
thology Plot		DESCRIPTION	ample Type		ample Number	ecovery (%)	PT 'N' Value/RQD%	EPTH (m)	LEVATION (m)	Pe O SPT MTO V ∆ Inta ▲ Ren * Undrai	enetration r • /ane* M ct • nould •	Testing DCPT Vilcon Vane* > Intact > Remould Strength (kPa)	2 4 Soil \	6 8 Vapour F per million 200 3 r Explosive W O	10 12 Reading (ppm) 00 400 Limit (LEL W _L Liquid			СОМ	MEN	TS	
	Geodetic Ground	d Surface Elevation: 105.08 m AVEMENT: 50 mm asphalt over	or lor	(Ű	Ê	ō		<u> </u>	20	40 :	60 80	2 <u>0</u>	40 6	0 80		음 두날: 신문:				
	FILL: silty cla reddish browr	ay/clayey silt, trace gravel, n to grey, moist, stiff to very stif	ff04.71 0.4 SS ff	;	1	62	13		-	0	• • • • • •		o ¹⁴								
	SILTY CLAY	/SHALE COMPLEX: trace san	103.86 SS	;	2	62	17	- 1 -	104 -	0	· · · · · · · · · · · · · · · · · · ·		o ¹⁸	• • • • • • • • •							
	trace gravel, t brown, moist,	trace limestone fragments, red very stiff to hard	ldish SS	; ;	3	100	50/13 cm				50 13 cm		o ¹⁰	*							
	BEDROCK	Shale, highly weathered to free	102.79				50/13	- 2 -	103 -		50_										
	very poor to e inclusion, gre	excellent quality, trace limeston y, moist	ie 55	; ·	4	/1	cm				13 cm										
			=\$\$	+	5	0	50/5 cm	- 3	102 -		50 5 cm										
	grey										* * *	· · ·									
								4	101 -												
								E			-	· · ·									
			ss	;	6	100	50/8 cm	-			50 8 cm			-							
	R	OCK CORING START						- 5 -	100 -		• • • • • • • • • • • • • • • • • • •										
	- Very Poor (Quality	RC	;	1	48	0	-			* * *	· · ·									
								- 6	00												
								Ē	55		* * * *	· · ·									
								-	-		*					Y -					
	- Fair Quality		RC	;	2	100	63	7 	98 -		•••••	0									
											* * * *	· · ·									
								- 8	07												
									97 -		•	· · ·									
	- Good Quali	ty	RC	;	3	100	76				•	0									
								- 9 -	96 -												
											•	· · ·									
								- 10													
	- Fair Quality		RC		4	100	64		95 -		* * * *	0									
											•	· · ·									
								- 11	94 -		* * * * * * *										
	- • • •		RC	;	5	100	62				•	0									
	- ⊦air Quality				-									-							
B.I.G	500 Tomken Rd	c. <u> </u>	roundwater o	lepth o	on co	mpletio	n of drill	ling:	<u>N/A m</u> .												
Cana T: 41	ssauga, ON L4V ada 6-214-4880	Borehole	roundwater c	lepth o	obser d, don	ved on	<u>3/23/2</u> titute a th	2023 at	understa	n of: nding of a	<u>6.71 m</u> . Il potentia	l conditions pr	esent and re	equires in	terpretativ	re assistan	ce				
F: 41	6-551-2633	from a q commisi	ualified Geoted	chnical	l Engir panyin	neer. Als Ig'Notes	o, boreho to Recor	ole infor rd of Bo	mation s reholes'.	hould be r	ead in cor	junction with t	he geotechi	nical repo	t for whic	h it was			e Pa	icale: 1 ige: 1	:63 of 3

RECORD OF BOREHOLE No. <u>BH/MW111</u>												
Proj	ect Number: BIGC-ENV-554D						Drilling	g Location: See boreh	ole location plan	Logged by: FJ		
	LITHOLOGY PROFILE	SC	IL SA	MPLI	NG			FIELD TESTING				
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	PenetrationTesting O SPT DCPT MTO Vane* Nilcon Vane A Intact Intact Remould Remould * Undrained Shear Strength (kPc 20 40 60 80	A table pr Values 2 4 6 10 12 Soil Vapour Reading A parts per million (ppm) 100 200 300 400 • • Lower Explosive Limit (LEL) W _p W • • • • • • • • •	OTTEL COMMENTS		
	BEDROCK: Shale, highly weathered to fresh, very poor to excellent quality, trace limestone inclusion, grey, moist											
	- Good Quality	RC	6	100	79	13	92 -	• •				
	- Excellent Quality	RC	7	100	94	— 14 	91		0			
	- Good Quality	RC	8	100	80	- 16 - 16 	89 -	Ó				
	- Fair Quality	RC	9	100	69	- 18	87 -	0				
	- Good Quality	RC	10	100	88	19	86 -	0				
	- Excellent Quality	RC	11	100	97	20	85 – 84 –		c			
	- Good Quality - Weak Strength	RC	12	100	87	- 22	83 -	0		UCS: 17.7 MPa		
	- Excellent Quality	RC	13	100	95	- - - - - - - - - - - - - - - - - - -	81 —		o			
	- Excellent Quality	RC	14	100	97	25 	80 -	nding of all potential conditions	C present and requires intervetation	ssistance		
	from a qualified of commissioned an	Geotechr d the acc	ical Engi ompanyi	neer. Als ng'Notes	o, boreho to Recor	ole inforn rd of Bore	nation sl eholes'.	hould be read in conjunction with	n the geotechnical report for which it	was Scale: 1 : 63		

٦

Г

RE	CORD OF BOREHOLE N	o .	BH/	MW	<u>111</u>						BLG.
Proj	ect Number: BIGC-ENV-554D						Drilling	g Location: See boreh	ole location plan		Logged by: FJ
	LITHOLOGY PROFILE	SC	DIL SA	MPLI	NG			FIELD TESTING		_	
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	PenetrationTesting O SPT ● DCPT MTO Vane* Nilcon Vane △ Intact ◆ Intact A Remould ◆ Remould * Undrained Shear Strength (kP 20 40 60 80		INSTRUMENTATION INSTALLATION	COMMENTS
	BEDROCK: Shale, highly weathered to fresh, very poor to excellent quality, trace limestone inclusion gray moiet					-	-				
	- Excellent Quality	RC	15	100	100	27	79		0		
	- Excellent Quality	RC	16	100	100	28	77		•		
	- Excellent Quality 74.37	RC	17	100	100	30	75		. Q		
	End of Borehole 30.7 Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading at 6.71 m bgs on March 23, 2023.										
	Borehole details from a qualified commisioned an	as prese Geotechr d the acc	ented, do nical Engi companyi	not const ineer. Als	titute a th o, boreho to Recor	orough u ble inform d of Bore	nderstan nation sl	Inding of all potential conditions hould be read in conjunction wit	present and requires interpretative as the geotechnical report for which it to	sistance was	Scale: 1 : 63

RI	ECORD	OF BOREHOLE N	lo.	<u>BH/</u>	MW	112	ı													10	B.L	G. SULTING
Pro	ject Number:	BIGC-ENV-554D						Drilling	g Location	: <u>S</u>	ee bore	ehole	locati	on pla	In				_ Logged	d by:	FJ	
Pro	ject Client:	Distrikt Capital Corporation						Drilling	g Method:	2	:00 mm	n Hol	low St	em Au	gering	9			_ Compil	ed by:	MM	
Pro	ject Name:	Phase II ESA and Supplement Hydrogeological Investigatio	tary Ge ns	otechn	ical ar	nd		Drilling	g Machine	: <u>T</u>	ruck M	ount	ed Drill						Review	/ed by:	KK	
Pro	ject Location:	590 Argus Road, Oakville, ON	1					Date S	Started:	<u>2</u>	2 Feb 2	23	Date	Comp	leted:	<u>27 Fe</u>	eb 23		Revisio	on No.:	<u>0, 10/4</u>	/23
	LITH	OLOGY PROFILE	SC	DIL SA	MPLI	NG			FIEL	D TE	STING	G	LA	BTE	STIN	G						
ithology Plot		DESCRIPTION	ample Type	ample Number	ecovery (%)	PT 'N' Value/RQD%	EPTH (m)	LEVATION (m)	Pene O SPT MTO Var △ Intact ▲ Remou	etration ● ne* N ↓ I Shear	Testing DCPT lilcon Va Intact Remou Strength ()	ane* . uld kPa)	 ★ Rinse 2 Soil △ parts 100 ▲ Lowe W_P ■ Plast 	PH Val 4 6 Vapou per milli 200 er Explos W 0 ic	r Read on (ppm 300 ive Limit	12 ing 400 (LEL) WL quid	I ISTRUMENTATION		CO	MMEN	TS	
	Geodetic Ground	d Surface Elevation: 104.85 m AVEMENT: 60 mm asphalt ove04.70	0 2	٥ ا	2	S	-	<u> </u>	20	40 	<u>60 80</u>)	20	40 :	60 :	80	<u> </u>	= =2: : : :=				
	FILL: sand a trace red & ye grey, moist, c FILL: silty sa	ular base 0.; nd gravel, trace wood pieces, sllow brick fragments, brown to ompact 104.09 nd, trace gravel, zones of silty 0.3	SS 3	1	41	10		104 -	0	• • • • •	· · · · · · · · · · · · · · · · · · ·					• • • • • • •						
	clay, reddish	brown to grey, moist, loose	SS	2	75	7	1 1-	-	0				09									
	SILTY CLAY trace gravel, brown, moist,	/SHALE COMPLEX: trace sand, 1.3 trace limestone fragments, reddish hard	SS	3	84	30	- - - - - - 2	103 -	0	· · · · ·			0 ⁸	· · · · · · · · · · · · · · · · · · ·		· · · · · ·						
	BEDROCK: S very poor to e inclusion, red	502.50 Shale, highly weathered to fresh, 2.3 excellent quality, trace limestone dish brown to grey, moist	3 SS	4	89	50/13 cm		-	1:	50 3 cm			-			•						
			SS	5	100	50/10 cm	- 3 - 3	102 -	1	50) cm						· · · · · · · ·						
	grey						-	101 -								•						
							4 	-														
								400		•	· · ·			-	-							
	F	OCK CORING START					- 5	100 -					• • • • • • •			• • • • • •	■ =					
	- Very Poor (Quality	RC	1	100	8		99 -	0						· · · · · · · · · · · · · · · · · · ·							
	- Fair Quality		RC	2	100	54		98 -		C												
								97 -		· · · · · · · · · · · · · · · · · · ·												
	- Good Qual	ty	RC	3	100	79	9	96 -			0											
	- Fair Quality		RC	4	100	56		95 –		Ċ	D											
	- Excellent C	uality	RC	5	100	97		94 - 93 -				c										
B.I.0 12-5 Miss	5. Consulting In 500 Tomken Rd issauga, ON L4'	c. V 2Z4 ↓ Ground	water de water de	oth on c	ompletio	on of dril <u>3/</u> 23/	lling: 2023 at	<u>N/A m</u> . a depth	of: 5.0) <u>5 m</u> .												
Can T: 41 F: 41	aua 6-214-4880 6-551-2633	= Borehole detai from a qualifie commisioned a	s as prese d Geotechi and the acc	ented, do nical Eng companyi	not cons ineer. Als ing'Notes	titute a th so, boreh s to Reco	horough ole infor rd of Bo	understa mation sl reholes'.	nding of all p hould be read	otential I in con	condition	ns pre with th	sent and i e geotech	requires Inical re	interproport for	etative a which it	assistan t was	ce		P	Scale: 1	:63

RE Proj	RECORD OF BOREHOLE No. BH/MW112 Image: roject Number: BIGC-ENV-554D Drilling Location: See borehole location plan Logged by: FJ LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING Image: Soil sampling in the set of the se													
	LITHOLOGY PROFILE	sc	IL SA	MPLI	NG			FIELD TESTING LAB TESTING						
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	PenetrationTesting O SPT ★ Rinse pH Values 2 4 6 8 10 12 Soli Vapour Reading A parts per million (ppm) 100 200 300 400 NO MTO Vane* Nilcon Vane* Lower Explosive Limit (LEL) WP Values WL WP COMMENTS A Intact Nemould Remould Lower Explosive Limit (LEL) WP WL Plastic COMMENTS Valuarianed Shear Strength (kPa) 20 40 60 80 20 40 60 80 20 40 60 80 20 40						
	BEDROCK: Shale, highly weathered to fresh, very poor to excellent quality, trace limestone inclusion raddish brown to grow most					-								
	- Fair Quality	RC	6	100	58	13	92 -							
	- Good Quality	RC	7	100	75	- 14 	90 -							
	- Excellent Quality	Φ												
	- Excellent Quality	RC	9	100	95	- 17 - 17 - 17 - 18 - 18	87 –	o						
	- Good Quality	RC	10	100	80	- - - - - - - -	86 -	Ô						
	- Excellent Quality	RC	11	100	97	- 20	85 – 84 –	c						
	- Excellent Quality	RC	12	100	98	22	83 -	e						
	- Excellent Quality	RC	13	100	98	23	81 –	e						
	- Excellent Quality	RC	14	100	97	- - - - - -	80 -							
	Borehole details from a qualified commisioned an	as prese Geotechr d the acc	nted, do iical Engi ompanyi	not const neer. Als ng'Notes	titute a th o, boreho to Recor	orough u ble inforr rd of Bor	understa nation s eholes'.	anding of all potential conditions present and requires interpretative assistance should be read in conjunction with the geotechnical report for which it was Scale: 1 :	63 f 3					

RE	ECORD OF BOREHOLE No. <u>BH/MW112</u>														
Proj	ect Number: BIGC-ENV-554D					C	Drilling	Location:	<u>See b</u>	orehole	e location	plan			Logged by: FJ
ithology Plot	LITHOLOGY PROFILE DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	FIELD Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained SI	ttionTesti ● DC Nilcon ◇ Int ● Re	NG ing CPT Vane* act smould gth (kPa)	LAB ★ Rinse ph 2 4 Soil Va parts per 100 2 ▲ Lower E: W _P ■ Plastic 20 0	TESTING	NSTRUMENTATION	NSTALLATION	COMMENTS
	BEDROCK: Shale, highly weathered to fresh, very poor to excellent quality, trace limestone inclusion raddich brown to gray maint	٥ ٥	0	Ľ.	S		ш 79 —	20 40	60	80	20 2	<u>ю ю 8</u> 0	=	=	
	- Excellent Quality	RC	15	100	98	26	78 —			C	· · · · · · · · · · · · · · · · · · ·				
	- Good Quality	RC	16	100	85	28	77			0					
	- Excellent Quality 74.29	RC	17	100	100	30	75			(>				
	End of Borehole 30.6 Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading at 5.05 m bgs on March 23, 2023. Borehole details from a qualified a	as prese Geotechn	Inted, do	not consi	itute a th	- orough un be informa	derstations	nding of all pote	ntial conducti	litions pre-	sent and requ	uires interpreta	ive assista ich it was	ance	Scale: 1 : 63

E.

R	ECORD	OF BOREH		o .	BH/	MW	<u>113</u>																	B	LG.
Pro	ect Number:	BIGC-ENV-554D							Drilling	g Loca	ation:	<u>Se</u>	e bor	rehol	e loca	ation	plan					Logged	by:	FJ	
Pro	ect Client:	Distrikt Capital Co	orporation	•					Drilling	g Meth	hod:	_20	00 mn	n Ho	llow	Stem	Auge	ering				Compile	ed by:	MM	
Pro	ect Name:	Phase II ESA and Hydrogeological I	Supplementa Investigations	ary Geo S	otechn	ical an	a		Drilling	g Mac	nine:	<u>1ri</u> 24	Ech (10uni		rill to Co	mala	tod: 1	22 E a			Reviewe	ed by:	<u>KK</u>	4/22
FIU								1			u.			23	_ Da				22 FE	1	-		IT NO	0, 10/-	4/23
			E	SC	DIL SA	MPLI	NG %				Penetr		SIIN	G	t L	LAB	Values		ز	z					
					Jer 1		/RQD		Ê	o s	Perieu SPT	• •	DCP1	J Г	Z S	4 oil Va	pour F	Readir	1 <u>2</u> 1g	NATIC		00		τς	
y Plot		DESCRIPTION		Type	Numt	(%) Y	Value	Ē	NOL	MTC ∆ Ir) Vane	* Nil ♦	lcon V Intact	ane*	10 ▲ Lo	0 20 owerEx	00 30 plosive)0 4 Limit (I	00 LEL)	LATIC		001		10	
holog				mple	mple	cover	N. T	PTH	EVA.	▲ F * Und	Remould Irained S	♦ Shear St	Remo trenath	ould (kPa)		V _P Hastic	• •	Liau	w⊾ ● Jid	STRU					
Lit	Geodetic Groun ASPHALT F	d Surface Elevation: 10 AVEMENT: 100 mm as)5.08 m sphalt o v⊕4 ,93	Sa	Sa	Re	ц.	- B	<u> </u>	2	20 4	06	0 8	ò	2	0 4	06	0 8	30 :	ŽŽ					
	220 mm grar FILL: silty sa	ular base ind, trace to some clay	0.2	~ ~ ~	1	62	7	È							_6				-	(18) (18	2				
	some gravel, moist, loose	trace organics, block to compact	o brown,	33	I	02	1	-						•											
				ģ	2	59	7	- 1	104							20			: : :						
					-	00	,	Ē	104	Ĭ				•					•						
								-								-			-						
				SS	3	41	11	- 2		.					01	5									
××			102.79						103 -					•					•						
11	trace gravel,	trace limestone fragme	ace sand, 2.3 ents, red t0is h49 2 a	SS	4	100	65/28 cm	-				6 28 cr	5 0 11	•	°9				•						
	BEDROCK:	Shale, highly weathered	d to fresh,											•				•	•						
	inclusion, gre	y, moist	iono	SS	5	100	82/10	Ē	102 -				82	20					:						
							cm						10 cm	ר. :					•						
								È.						•					•						
								- 4	101 -										: : :						
								Ē						•					• • •						
								Ē						•					•						
								— 5 _	100 -																
														•					•						
								-			-			•					•						
								6	99 -																
	F													•					•						
								È						•					•						
	Deer Oueli			RC	1	100	50	- 7	98 -			0													
	- Poor Quain	у						-			-			•					•						
								Ē						•					•						
								- 8	97 -										: :						
														•					•						
	- Poor Quali	v		RC	2	100	43	-				0		•					•						
		,						- 9	96 -										: : : · · · ·						
								Ē	50					•				•	•						
									-					•					- - - -						
								- 10	0.5										: : :						
	- Fair Quality	,		RC	3	100	72	-	95 -				0	•					•						
								Ē						•					•						
								- - 11											•						
								È ''	94 -																
								F		1	-		_				•		*						
	- Good Qual	ity		RC	4	100	76	È					0						•						
B.I.C	J. Consulting In	с.	Groundwa	ater dep	oth on co	ompletic	n of drill	12 ling:	<u>N/A m</u> .	-															
Miss	issauga, ON L4 ada	N 2Z4	Groundwa	ater dep	oth obse	rved on	<u>3/23/2</u>	<u>2023</u> at	t a depth	n of:	22.0	<u>0 m</u> .													
T: 4 F: 4	6-214-4880 6-551-2633	Γ	Borehole details	as prese Geotechn	nted, do nical Engi	not consi ineer. Als	titute a th	orough ole infor	understa mation s	nding o hould b	f all pot e read i	ential o	condition	ons pre with th	esent ar	nd requ	ires in al repoi	terpret t for w	ative a hich it	ssistance was		T	5	Scale: 1	: 63
			commisioned and	d the acc	ompanyi	ng'Notes	to Recor	rd of Bo	reholes'.														Pa	ae: 1	of 3

		60		<u>м</u> рі і	NG				TESTING		TESTING		
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Sh 20 40	tionTesting ● DCPT Nilcon Vane* ◆ Intact ◆ Remould ear Strength (kPa) 60 80	Kinse ph 2 4 Soil Va △ parts per 100 2 ▲ Lower E W _P Plastic 20 4	Values 6 8 10 12 pour Reading million (ppm) q0 300 400 <th>INSTRUMENTATION INSTALLATION</th> <th>COMMENTS</th>	INSTRUMENTATION INSTALLATION	COMMENTS
_	BEDROCK: Shale, highly weathered to fresh, poor to excellent quality, trace limestone inclusion, grey, moist												
	- Good Quality	RC	5	100	75	13	92 -		o				
	- Good Quality	RC	6	100	77	14	91		O				
	- Excellent Quality	RC	7	100	95	- 16 - 16 	89 -		o				
	- Excellent Quality	RC	8	100	96	- - - - - - - - - - - - - - - - - - -	88		0				
	- Excellent Quality	RC	9	100	100	- 19 - 19 	86 -		¢	>			
	- Excellent Quality	RC	10	100	95	21	85 — 84 —		0				
	- Excellent Quality	RC	11	100	91	22	83 -		o				
	- Excellent Quality	RC	12	100	94	23	82		O				
	- Good Quality	RC	13	100	83	25 25 	80 -		o				

RE Proj	ECORD OF BOREHOLE No. BH/MW113 ect Number: BIGC-ENV-554D Drilling Location: See borehole location plan LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING													
	LITHOLOGY PROFILE	SC	IL SA	MPLI	NG			FIELD TESTIN	G	LAB TESTING				
-ithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	ОЕРТН (m)	ELEVATION (m)	PenetrationTesting O SPT ● DCPT MTO Vane* Nilcon Va △ Intact ◇ Intact A Remould ◆ Remo * Undrained Shear Strength 20 40 60 80	+ R 2 △ p 1 △ 1 ▲ L ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Respective Produces 12 30il Vapour Reading 12 30il Vapour Reading arts per million (ppm) 0 200 300 400 ower Explosive Limit (LEL) 0 20 40 0 12 Vp W W W 0 100 12 100 Vp W W U 0 10	NSTRUMENTATION NSTALLATION	COMMENTS		
	BEDROCK: Shale, highly weathered to fresh, poor to excellent quality, trace limestone													
	inclusion, grey, moist - Excellent Quality	RC	14	100	100	26	79		•					
	- Excellent Quality	RC	15	100	95	28	77 -		0					
	- Excellent Quality RC RC 16 100 100 - 30 75 													
	End of Borehole 30.7 Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading at 22.00 m bgs on March 23, 2023.	as prese Geotechn	nted, do nical Engi	not consider Also	titute a th	orrough t	understat anation sl	nding of all potential condition	Ins present a with the geot	nd requires interpretative at technical report for which it	sistance	Scale: 1: 63		

	RING WE	LL N	lo. I	BH/N	<u>IW1</u>		Soo Boroha	ale Leastion Dian		Loggod by	Consut Inc
Project Number. BIGC-ENV-334A					Drilling	Method	100 mm S	olid Stem Augering		_ Logged by.	<u> </u>
Project Olient: District Capital	ical Investigati	on			Drilling	Machine [.]	Truck Mour	nted Drill		_ Complied by:	AC
Project Location: 590 Argus Road, Oak	/ille, Ontario	011			Date \$	Started:	25 May 22	Date Completed: 25 Ma	iy 22	Revision No.:	1, 4/4/23
				<u> </u>		FIELD.	TESTING				
DESCRIPTION	e Type	e Number	ery (%)	l' Value/RQD%	ATION (m)	Penetra O SPT MTO Vane* ∆ Intact A Remould	tionTesting ● DCPT Nilcon Vane* ◆ Intact ◆ Remould		LLATION LLATION	COMMEN	rs
	ample	ample	Recove			* Undrained Sh	ear Strength (kPa)	Plastic Liquid	NSTR NSTA		
ASPHALT PAVEMENT: 50 mm asphalt 100 mm granular base FILL: sand and gravel, trace silt, trace organics, brown, moist, loose	m 05 ov¢64.30 02 SS	1	41	6	104 –	0		0.17			
- black stains, oxidations	SS	2	84	8 _ /	1	0		o ¹⁶			
SILTY CLAY/CLAYEY SILT/SHALE COMPLEX: trace silt, trace gravel, grey, hard	102.93 1.5 moist, SS	3	95	63 - :	103 — - - 2 ,		O	o ¹¹			
BEDROCK: Shale, highly weathered, gre damp to moist, hard	102.16 ey, 2.3 <u>SS</u>	4	125 50	- <u>J/8cm</u> - - - - -		5 8ci	0 0 n	o ²	89 89		
	SS_	5	260 50	⊥/5cm_ - - -	3	5cr	0 O n	o ³			
	SS	6	48 50	/15cm, 	4	5 15cr	0 0 n	o ⁴			
	SS	7	50 53	/28cm	100 - - - 5	280	53 m	o ¹⁴			
wet	SS	8	100 50	- - <u>)/8cm</u> _ - - -	- 99 –	5 8cr	0 O n	o ¹⁶			
End of Borehole Notes: 1. Borehole open upon completion of dril 2. Ground water level reading at 3.89 m upon completion of drilling. 3. Groundwater level reading at 3.9 m bg May 31, 2022.	98.35 6.1 Jung. Jogs Is on				3						
I.G. Consulting Inc. ✓ -5500 Tomken Rd. = ssissauga, ON L4W 2Z4 ▼ anada = 416-5214-4880 Воге	Groundwater de Groundwater de hole details as prese	pth on co pth obser	mpletion o	of drilling: 2022-05-: Ite a thorou	<u>4.4 m</u> . <u>31</u> at a dep igh understa	th of: <u>3.9 r</u>	n. ntial conditions p	resent and requires interpretative as	sistance		

R	ECORD OF BOREHOLI	E No.	BH2	2								B.I.G.
Pro	ject Number: BIGC-ENV-554A						Drilling	g Location:	See Boreho	le Location Plan		Logged by: KK
Pro	ject Client: Distrikt Capital						Drilling	g Method:	100 mm Sc	olid Stem Augering		_ Compiled by: <u>KK</u>
Pro	ject Name: Preliminary Geotechnical	l Investigati	on				Drilling	g Machine:	Truck Moun	ted Drill		Reviewed by: AC
Pro	ject Location: 590 Argus Road, Oakville	e, Ontario					Date \$	Started:	<u>25 May 22</u>	_ Date Completed:	25 May 22	Revision No.: <u>1, 4/4/23</u>
	LITHOLOGY PROFILE	so	DIL SA	AMPLI	NG			FIELD	TESTING		<u> </u>	
Lithology Plot	DESCRIPTION Geodetic Ground Surface Elevation: 105.02 m	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Sh 20 40	tionTesting • DCPT Nilcon Vane* • Intact • Remould ear Strength (kPa) 60 80	Krise pH Values 2 4 6 8 10 Soil Vapour Readir parts per million (ppm) 100 200 300 4 Lower Explosive Limit (W _P W Plastic Liq 20 40 60 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0	COMMENTS
	ASPHALI PAVEMENI: 50 mm asphalt ove 100 mm granular base FILL: sand and gravel, brown, moist, compar	₫4.87 0.2 ct SS	1	38	16	- - -		0		o ¹		
	- silty clay/clayey silt, trace sand, black stains oxidations, brown/grey, moist, stiff	s, SS	2	100	10	+ - - - - - - -	- 104 —	0		o ¹³		
	10 SILTY CLAY/CLAYEY SILT/SHALE COMPLEX: trace silt, trace gravel, reddish brown, moist, very stiff	03.50 1.5 SS	3	92	26	- - - - - - - - -	103 -	0		o ⁷		
	10 BEDROCK: Shale, highly weathered, occasional limestone layers, grey, damp to moist	02.73 2.3 SS	4	100	50/13cr		-	5 13cr	0 0 1	o ¹²		
						- - - - -	102 -					
						- - - - - - -	101 -					
		SS	5	100	50/10cr	- - - - - - - - - -	- - - - - - - - - - -	5 10cr	0 0 n	o ¹³	-	
							-					
		SS _	6	100	50/5cm		99 -	5cr	0 n	o ¹⁴		
						- - - -	98 -		0	10		
	End of Borehole Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading measured at 4.31 m bgs upon completion of drilling.	97.32 <u>ss</u> 7.7	7	100	50/5cm			1 5 5 6	Ŋ			
B.I.C 12-5 Miss Can	5. Consulting Inc. 500 Tomken Rd. issauga, ON L4W 2Z4 ada	oundwater de	pth on c		on of dril	lling:	<u>4.30 m</u> .				I I	
T: 4 F: 4	16-214-4880 Borehole 16-551-2633 from a qu commisio	details as prese alified Geotech oned and the acc	ented, do nical Eng company	o not consi gineer. Als /ing'Notes	titute a th o, boreh to Reco	norough ole infor rd of Bor	understa mation sl reholes'.	nding of all poten nould be read in	ntial conditions pr conjunction with t	esent and requires interpret he geotechnical report for w	ative assistance hich it was	Scale: 1 : 47 Page: 1 of 1

RE	CORD	OF MONITORING	WE		No.	BH	/ M \	<u>N3</u>					10	B.L.G. Gondulting
Proje	ct Number:	BIGC-ENV-554A						Drilling	Location:	See Borehol	e Location Plan		Logged by:	кк
Proje	ct Client:	Distrikt Capital						Drilling	Method:	100 mm So	lid Stem Augering		Compiled by:	кк
Proje	ct Name:	Preliminary Geotechnical Inve	stigatio	on				Drilling	Machine:	Truck Mount	ted Drill		Reviewed by:	AC
Proje	ct Location:	590 Argus Road, Oakville, Ont	ario					Date S	Started:	25 May 22	_ Date Completed: 25 M	ay 22	Revision No.:	1, 4/4/23
	LITHO	OLOGY PROFILE	SC	IL SA	MPLI	NG			FIELD	resting	LAB TESTING			
Lithology Plot D	eodetic Ground	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Shu 20 40	DCPT Nilcon Vane* Intact Remould aar Strength (kPa) 60 80		INSTRUMENTATION INSTALLATION	COMMEN	TS
	FILL: sand ar organics, brow	ular base 0.2 nd gravel, trace silt, trace wn, moist, loose	ss	1	79	9	-	-	0		o ⁸			
	- silty clay/clay oxidations, bro SILTY CLAY/ COMPLEX: tr brown to grey	yey silt, trace sand, black stains, own/grey, moist, firm 104.08 CLAYEY SILT/SHALE 0.8 ace silt, trace gravel, reddish , moist, hard	SS	2	79	38	- - - - - - 1 -	104 — - - -	0	· · · · · · · · · · · · · · · · · · ·	···o ¹⁰ ······			
			SS	3	58	58/28cn		- - - 103 —	28	58. O	o ⁵			
			ss	4	100	50/5cm	2	-	5 5cr	0 0 1	o ¹⁰			
		101.79	66	E	100	E0/8cm	- - - - 3	102 -	5	0				
	damp to mois	hale, highly weathered, grey, 3.1 t, hard			100	50/8011	-	-	8cr	n				
							- - - - - - - -	101 -						
	wet		SS	6	100	50/13cn	- - - - - - - 5	100 -	5 13cr	D O n				
							-	- - - - - - - - - - - - - - - 						
▋	End of Boreh	98.74		7	100	50/3cm	- 6		5	0	······;·····			
	Notes: 1. Borehole oj 2. Ground wai 3.35 m bgs up 3. Groundwat May 31, 2022	pen upon completion of drilling. ter level reading measured at oon completion of drilling. er level reading at 3.37m bgs on							SCI					
B.I.G. 12-550 Missis Canac T: 416 F: 416	Consulting Ind 00 Tomken Rd. sauga, ON L4V la -214-4880 -551-2633	C.	ater dep ater dep as prese Geotechn	oth on co oth obse nted, do nical Eng	not cons	on of dril <u>2022</u> - titute a th so, boreh	ling: 05-31 orough ple infor	<u>3.5 m</u> . at a dep understar mation sh	th of: <u>3.37</u> nding of all poter nould be read in	m. tial conditions pre	esent and requires interpretative a geotechnical report for which it	ssistance was		Scale: 1 : 47

R	ECORD OF MONITORING	WE		No.	BH	/ M \	N4						B.I.G. Gordul This
Proj	ect Number: BIGC-ENV-554A						Drilling	g Location:	See Boreho	le Location Plan		Logged by:	кк
Proj	ect Client: Distrikt Capital						Drilling	g Method:	100 mm Sc	lid Stem Augering		Compiled by:	<u>кк</u>
Proj	ect Name: Preliminary Geotechnical Inve	stigati	on				Drilling	g Machine:	Truck Moun	ted Drill		Reviewed by:	AC
Proj									25 May 22		ay 22	Revision No.:	1, 4/4/23
ithology Plot	DESCRIPTION	Sample Type	Sample Number	Secovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	PIELD Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Sh	ionTesting ● DCPT Nilcon Vane* ◇ Intact ◆ Remould aar Strength (kPa) 80	LAB TESTING Aligned Filler Aligned Fi	NSTRUMENTATION NSTALLATION	COMMEN	TS
	ASPHALT PAVEMENT: 50 mm asphalt oven 120 mm granular base FILL: sand and gravel, trace silt, trace organics, brown, moist, loose	ss	1	84	7		 	0		o ²⁸	<u>~~~</u> 국왕, 국왕, 상황, 상황,		
	- silty clay/clayey silt, trace sand, black stains, oxidations, brown/grey, moist, firm	SS	2	100	6	- - - - - 1	- - - 104 —	0					
	103.53 BEDROCK: Shale, highly weathered, reddish 1.5 brown damp to moist						-						
		SS	3	100	81	- 2	103 -		0	o ⁶			
		SS	4	100	50/10cr		-	10c	O n	o ⁷			
	grey		5	100	50/3cm	- - - -	102 -	5	0 0				
						- - - - - -	- - - 101 —						
		SS	6	100	50/13cr		-		0 O n	o ¹¹			
						- - - - -	100 -						
							-		0				
	88.95 End of Borehole 6.1 Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading measured at 4.88 m bgs upon completion of drilling. 3. Groundwater level reading at 3.44 on May 31, 2022.	- 33-	7	100-	 50/3cm		99 –		r n				
B.I.G 12-5 Missi Cana T: 41 F: 41	Consulting Inc. 500 Tomken Rd. ssauga, ON L4W 2Z4 da 6-214-4880 6-551-2633 Groundw E Groundw E Ground	l vater dep vater dep s as prese Geotechr	oth on co	i completic erved on not cons incer. Als	n of dril <u>2022</u> titute a th	ling: -05-31 norough ole infor	<u>4.9 m</u> . at a dep understa	th of: <u>3.44</u> nding of all pote rould be read in	<u>m</u> . ntial conditions pr conjunction with t	esent and requires interpretative a	ssistance was	s	Scale: 1 : 47

R	ECORD OF BOREHOLE N	o. _	BH	5										B.LG. Consulting
Pro	ject Number: BIGC-ENV-554A						Drilling	g Location:	See Boreho	le Location Pla	an		_ Logged by:	KK
Pro	ject Client: Distrikt Capital						Drilling	g Method:	100 mm So	lid Stem Auge	ering		Compiled by:	KK
Pro	ject Name: Preliminary Geotechnical Invest	stigatio	on				Drilling	g Machine:	Truck Moun	ted Drill			Reviewed by:	AC
Pro	ject Location: <u>590 Argus Road, Oakville, Onta</u>	ario					Date	Started:	26 May 22	_ Date Comp	leted: 26 M	ay 22	Revision No.:	1, 4/4/23
	LITHOLOGY PROFILE	SC	IL SA	MPLI	NG			FIELD	TESTING		STING	-		
hology Plot	DESCRIPTION	ample Type	ample Number	scovery (%)	PT 'N' Value/RQD%	EPTH (m)	-EVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Sh	tionTesting DCPT Nilcon Vane* Intact Remould 	A Trible private 2 4 6 Soil Vapour △ parts per millio 100 200 ▲ Lower Explosin W _P W ■ O Plastic	8 10 12 ■ Reading n (ppm) 300 400 ve Limit (LEL) W _L Liquid	STRUMENTATION STALLATION	COMMENT	S
Lit	Geodetic Ground Surface Elevation: 105.13 m ASPHALT PAVEMENT: 70 mm asphalt over the second s	Sa	Sa	Ř	ц.	- B	105	20 40	60 80 /	20 40	60 80 : :	ŽŽ		
	100 mm granular base 104.95 FILL: sand and gravel, trace silt, trace organics, brown, moist, compact	SS	1	41	14		105 -	0		o ⁵				
	SILTY CLAY/CLAYEY SILT/SHALE 0.8 COMPLEX: trace silt, trace gravel, reddish brown, moist, very stiff	SS	2	92	20	- - - - -	104 -	O		o ⁶				
	103.61 BEDROCK: Shale, highly weathered, reddish 1.5 brown, damp to moist	SS	3	100	73	- - - - - - 2			0	o ⁹				
		SS	4	100	5/10cm		103 – 100	15 O m		o ⁶				
	grey	ss	5	56	76/20cr	- - - - -	102 -		76 20cm	o ¹⁵				
						- - - - - 4 -	101 -							
		SS	6	100	50/8cm		100 -	80	so m	o ¹⁶				
			_		50/0		-		jQ			=		
		- 33		100	- DU/SCII		99 -	3c	U m					
						- - - - -	98 –							
	97.43 End of Borehole 7.7 Notes: 1. Borehole open upon completion of drilling. 2. Ground water level reading measured at 5.18 m bgs upon completion of drilling.	SS	8	100	50/8cm			8c	00 m	o ¹⁰				
B.I.G. Consulting Inc. Image: Construction of drilling: Image: Construc														
T: 4 F: 4	16-214-4880 16-551-2633 Borehole details from a qualified (commisioned an	as prese Geotechr d the acc	nted, do iical Eng ompanyi	not cons ineer. Als ing'Notes	titute a th so, boreh s to Reco	horough ole info rd of Bo	understa rmation sl preholes'.	nding of all pote nould be read in	ntial conditions pro conjunction with th	esent and requires i he geotechnical rep	interpretative a port for which it	ssistance was	Sc Pag	ale: 1 : 47 e: 1 of 1

R	ECORD	OF MONITORING	WE		No.	BH	/ M \	<u>N6</u>									10	B.LG. Gondultw
Pro	ject Number:	BIGC-ENV-554A						Drilling	Location:	See	Borehol	e Loc	ation P	lan			Logged by:	КК
Pro	ject Client:	Distrikt Capital						Drilling	Method:	100	mm So	lid St	em Aug	jering			_ Compiled by:	КК
Pro	ject Name:	Preliminary Geotechnical Inve	stigatio	on				Drilling	Machine:	Tru	ck Mount	ed Dr	ill				_ Reviewed by:	AC
Pro	ject Location:	590 Argus Road, Oakville, Onta	ario					Date S	started:	<u>26 I</u>	<i>l</i> lay 22	_ Da	e Com	pleted:	<u>26 Ma</u>	ay 22	Revision No.:	1, 4/4/23
	LITHO		SC	NL SA	MPLI	NG			FIELD	TES	TING	L			G	-		
Lithology Plot	Geodetic Ground	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained St 20 40	Nilc Nilc ear Stre 60	sting DCPT on Vane* Intact Remould ength (kPa) <u>80</u>	▲ 10 ▲ 2 ▲ pa 10 ▲ Lo W ■ Pli 20	A 6 Dil Vapor rts per mil 0 200 wer Explo p V castic 0 40	Nur Read lion (ppm 300 sive Limit V 60	12 ing 400 (LEL) WL ■ quid 80	INSTRUMENTATION	COMMEN	ITS
×	ASPRALT PA 115 mm grant FILL: clayey s moist, stiff	lar base 15.18 ilt, trace to some sand, brown,	SS	1	70	11	-	105 —	0			ہ	5					
	SILTY CLAY/ COMPLEX: tr brown, moist,	104.60 CLAYEY SILT/SHALE 0.8 ace silt, trace gravel, reddish very stiff	SS	2	92	24	- - 	-	0			09		- - - - - - - - - - - - - - - - - - -				
	BEDROCK: S brown, damp	103.84 hale, highly weathered, reddish 1.5 o moist	SS	3	100	100	- - - - - -	104 — - - - -			¢	o ⁸		-	· · · · · · · · · · · · · · · · · · ·			
			SS	4	100	50/8cm		103 —	8c	i0 0 m		o ³			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
			SS	5	95	88/28cn	- 3 	- - - - - - - - - - -			88 0 28cm	o ¹²		· · · · ·	* * * * * * * * * * * * * * * * * * *			
	 grey		SS	6	100	50/8cm	- - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	t 8c	50 m		0 ¹¹						
							- 5 	- - - - - - - - - - - - - - - - - - -						- - - - - - - - - - - - - - - - - - -				
	- wet End of Boreh Notes: 1. Borehole oj 2. Ground wai 3.15 m bgs up 3. Groundwat May 31, 2022	99.16 ole 6.2 been upon completion of drilling. er level reading measured at on completion of drilling. r level reading at 2.92 mbgs on	SS	7	100	50/10cn	6		10c	50 O m		12	2	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
2-5 /liss 2an	5. Consulting Ind 500 Tomken Rd. issauga, ON L4V ada 16-214-4880 16-51-2633	✓ Groundw ✓ 2Z4 ✓ Groundw Borehole details	ater dep ater dep as prese	oth on co oth obse	ompletic erved or not cons	on of dril	ling: . <u>05-31</u>	<u>3.1 m</u> . at a dep understa	h of: <u>2.92</u> nding of all pote	<u>? m</u> . ntial co	nditions pre	sent an	d require	s interpr	etative a	ssistance		Scalo: 1 · 4

oject Client: Distrikt Capita	al						Drilling	, Meth	od: _	100 mi	n So	lid Stem	Augerir	ng		Compiled by:	кк
oject Name: Preliminary G	eotechnical Inves	stigatio	on				Drilling) Mach	ine: <u>T</u>	ruck N	lount	ted Drill				Reviewed by:	AC
oject Location: 590 Argus Ro	ad, Oakville, Onta	ario					Date	Started	: 2	6 May	22	_ Date (Complete	ed: <u>26 M</u>	ay 22	Revision No.:	<u>1, 4/4/23</u>
LITHOLOGY PRO	FILE	SO	IL SA	MPLI	NG			FI	ELD TE	STIN	G	LA	B TEST	ING			
DESCRIPTIC	DN n: 105.08 m	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	F O SF MTO △ Int ▲ Re * Undra 20	Penetration PT Vane* Nact Kmould Anned Shear Anned She	Nilcon V Intac Strength 60	g T /ane* t ould (kPa) 30	 ★ Rinse 2 4 Soil \ parts r 100 ▲ Lower W_P ■ Plastic 20 	Alues 6 8 /apour Re per million (p 200 300 Explosive L W 0 40 60	10 12 eading ppm) 0 400 Limit (LEL) W _L Liquid 80	INSTRUMENTATION INSTALLATION	COMMEN	TS
ASPHALT PAVEMENT: 60 mr 110 mm granular base FILL: sand and gravel, trace si organics, brown, moist, loose	n asphalt ove _f 54.91 lt, trace	SS	1	100	12		105 -	0	* * * * * *	* * * * * *	* * * * * * * * * * * * * * * * * * * *	o ¹⁴		• • • • • •			
- silty clay/clayey silt, trace sand oxidations, brown/grey, moist, f	d, black stains, irm	SS	2	95	15	- - - - - - -	104 -	0	- - - - - - - - - - - - - - - - - - -			o ¹³					
BEDROCK: Shale, highly weat brown, damp to moist	103.56 hered, reddish 1.5	SS	3	92	69	- - - - - -	-			0	- - - - - - - - - - - - - - - - - - -	o ⁷					
grey		SS	4	135	50/13cr		103 -		50 13cm	* * * * * *	•	o ⁵					
		SS	5	100	50/8cm	- - 3 - - -	102 -		50 8cm		· · · · · · · · · · · · · · · · · · ·	o ²⁴	•		Ţ		
						- - - 4 - -	101 -		- - - - - - - - - - - - - - - - - - -								
wet		SS	6	100	50/13cr	- 5	- - - 100 —		50 13cm		- - - - - - - - - - - - - - - - - - -	o ¹⁴		· · · · · · ·			
				100	50/3~m				50		- - - - - - - - - - - - - - - - - - -	15					
					00,001	- - - -	-		3cm	* * * * * * * * *		0					
						- 7 - - -	98 -		50		· · · · · · · · · · · · · · · · · · ·	40					
End of Borehole Notes: 1. Borehole open upon comple 2. Ground water level reading r 3.01 m bgs upon completion of	97.38 7.7 tion of drilling. neasured at drilling.	SS	8	100	50/5cm				5cm		- - - - - - - - - - - - - - - - - - -	<u>0¹⁸</u>					
3. Consulting Inc.	포 Groundwa	ater dep	th on c	ompletic	n of dril	ling:	<u>3.2 m</u> .							•			

REC	ORD (OF MONITORING	WE		No.	BH	/ M \	<u>N8</u>					10	B.L.G. Government
Project	Number:	BIGC-ENV-554A						Drilling	Location:	See Boreho	ble Location Plan		Logged by:	кк
Project	Client:	Distrikt Capital						Drilling	Method:	100 mm S	olid Stem Augering		Compiled by:	КК
Project	Name:	Preliminary Geotechnical Inve	stigati	on				Drilling	Machine:	Truck Mou	nted Drill		Reviewed by:	AC
Project	Location:	590 Argus Road, Oakville, Ont	ario					Date S	Started:	26 May 22	Date Completed: 26 M	ay 22	Revision No.:	1, 4/4/23
	LITHC	LOGY PROFILE	SC	DIL SA	MPLI	NG			FIELD	TESTING	LAB TESTING			
Lithology Plot	detic Ground	DESCRIPTION Surface Elevation: 105.12 m VEMENT: 50 mm asphalt ovęňa os	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetra O SPT MTO Vane* △ Intact ▲ Remould * Undrained Shu 20 40	tionTesting DCPT Nilcon Vane* Intact Remould ear Strength (kPa) 60 80 	★ Rinse PH Values 2 4 6 8 10 12 Soil Vapour Reading △ parts per million (ppm) 100 200 300 400 ▲ Lower Explosive Limit (LEL) Wp W W 0 90 90 400 100 200 300 400 100 100 100 100 100 100 100 100 100 400 100 400 100 <	INSTRUMENTATION	COMMEN	TS
F or n	10 mm granu ILL:silty clay/ ccassional or noist, firm to s	llar base 0.2 (clayey silt, trace sand, ganics, oxidations, brown/grey, tiff	ss	1	92	7			0		o ¹⁶			
B	BEDROCK: S	103.60 hale, highly weathered, reddish 1.5	SS	2	84	12		104 — 	0		o ¹¹			
	rown, damp t	o móist	ss	3	58	70/28cn	- - - - -	- - - 103 — -	5	28cm	0 ¹⁷			
			SS	4	100	50/3cm			3cr	0 n	o ⁷			
g	.rey		SS	5	100	<u>50/10cn</u>		102 — - - - - - - - - - - - - - -	10cr	O	o ³			
			SS	6	100	50/13cn		101 — - - - - - - -	5 13cr	0 O n	o ⁴			
							- 5 - - - - -	100 — - - - -						
		98.92	SS	7	100	50/8cm	- 6	- - 99 —		0	o ⁵			
N 1. 2. 5. 3. M	lotes: . Borehole op . Ground wat 5.80 m bgs up . Groundwate <i>I</i> ay 31, 2022.	ble 0.2 ben upon completion of drilling. er level reading measured at on completion of drilling. er level reading at 4.55 mbgs on												
B.I.G. Co 12-5500	onsulting Inc Tomken Rd.	Groundv	l /ater dep	bth on c	ompletic	n of dril	ling:	<u>2.9 m</u> .				<u> </u>		
Canada T: 416-21 F: 416-55	14-4880 51-2633	Borehole details from a qualified commisioned ar	as prese Geotechr d the acc	nted, do nical Eng	not cons ineer. Als ing'Notes	titute a the so, boreh sto Reco	-05-31 norough ole infor rd of Bo	at a dept understar mation sh reholes'.	not: <u>4.55</u> nding of all poter would be read in t	<u>m</u> . ntial conditions p conjunction with	resent and requires interpretative a the geotechnical report for which it	ssistance was		Scale: 1 : 47

APPENDIX B: MECP WWR, PTTW AND EASR SUMMARY TABLES

Count	Well ID	Date Completed	Depth	Reported Water	Status of Well
count		Bute completed	(m)	Level (m)	
1.	2802422	07/21/1948	12.2	4.9	Water supply
2.	2810039	04/06/2004	5.1	N/A	Observation well
3.	2810241	05/13/2005	N/A	4	Abandoned
4.	2810285	02/01/2005	6	N/A	Observation well
5.	2810392	09/20/2005	4.5	3.9	Observation well
6.	2810455	12/13/2005	5.8	5.5	Observation well
7.	2810456	12/16/2005	N/A	2	Abandoned
8.	2810649	08/28/2006	7.6	N/A	Observation well
9.	7041205	01/12/2007	2.4	N/A	Observation well
10.	7100453	09/26/2007	4.7	N/A	Observation well
11.	7100453	09/26/2007	N/A	N/A	Observation well
12.	7101141	09/27/2007	N/A	N/A	Test Hole
13.	7101141	09/27/2007	N/A	N/A	Test Hole
14.	7104345	03/17/2008	5.2	N/A	Observation well
15.	7134031	09/16/2009	6.1	N/A	Observation well
16.	7152039	09/03/2010	4	N/A	Test Hole
17.	7152039	09/03/2010	N/A	N/A	Test Hole
18.	7152039	09/03/2010	N/A	N/A	Test Hole
19.	7152039	09/03/2010	N/A	N/A	Test Hole
20.	7152039	09/03/2010	N/A	N/A	Test Hole
21.	7152039	09/07/2010	N/A	N/A	Test Hole
22.	7152039	09/07/2010	N/A	N/A	Test Hole
23.	7152039	09/07/2010	N/A	N/A	Test Hole
24.	7152039	09/07/2010	N/A	N/A	Test Hole
25.	7152039	09/07/2010	N/A	N/A	Test Hole
26.	7152039	09/07/2010	N/A	N/A	Test Hole
27.	7152039	09/08/2010	N/A	N/A	Test Hole
28.	7152039	09/08/2010	N/A	N/A	Test Hole
29.	7152039	09/08/2010	N/A	N/A	Test Hole
30.	7152039	09/09/2010	N/A	N/A	Test Hole
31.	7152039	09/09/2010	N/A	N/A	Test Hole
32.	7161332	03/29/2011	3.4	N/A	N/A
33.	7161333	03/29/2011	3.4	N/A	N/A
34.	7161334	03/29/2011	3.4	N/A	N/A
35.	7173256	11/17/2011	5.5	N/A	Test Hole
36.	7173257	11/17/2011	4.6	N/A	Test Hole
37.	7173258	11/17/2011	4.3	N/A	Test Hole
38.	7173259	11/17/2011	4.3	N/A	Test Hole
39.	7173260	11/17/2011	4.3	N/A	Test Hole
40.	7187270	05/04/2012	N/A	1.5	Abandoned
41.	7187271	05/07/2012	N/A	1.5	Abandoned
42.	7187272	05/07/2012	N/A	1.4	Abandoned
43.	7187273	05/07/2012	N/A	1.5	Abandoned

Count	Well ID	Date Completed	Depth	Reported Water	Status of Well
			(m)	Level (m)	
44.	7187274	05/07/2012	N/A	1.3	Abandoned
45.	7187275	05/07/2012	N/A	1.5	Abandoned
46.	7187276	05/02/2012	N/A	1.5	Abandoned
47.	7187277	05/07/2012	N/A	1.5	Abandoned
48.	7187278	05/07/2012	N/A	1.5	Abandoned
49.	7187787	08/28/2012	3.4	N/A	Observation well
50.	7188619	04/13/2012	N/A	N/A	N/A
51.	7192191	05/18/2012	N/A	N/A	N/A
52.	7205225	06/21/2013	4.9	N/A	Test Hole
53.	7205226	06/21/2013	4.9	N/A	Test Hole
54.	7205227	06/20/2013	4.6	N/A	Test Hole
55.	7205228	06/20/2013	4.6	N/A	Test Hole
56.	7205229	06/20/2013	4.6	N/A	Test Hole
57.	7205230	06/20/2013	4.6	N/A	Test Hole
58.	7205231	06/20/2013	4.6	N/A	Test Hole
59.	7207704	07/15/2013	6.1	N/A	Monitoring and Test Hole
60.	7217180	12/23/2013	N/A	N/A	N/A
61.	7241910	02/13/2015	20.1	N/A	Observation well
62.	7241911	02/17/2015	20.1	N/A	Observation well
63.	7241968	02/11/2015	20.1	N/A	Observation well
64.	7247761	02/09/2015	N/A	N/A	N/A
65.	7253999	11/20/2015	6.1	N/A	Observation well
66.	7254000	11/20/2015	6.1	N/A	Observation well
67.	7259855	09/09/2015	N/A	N/A	N/A
68.	7263647	04/23/2016	6.1	N/A	Monitoring and Test Hole
69.	7263648	04/23/2016	6.1	N/A	Monitoring and Test Hole
70.	7263649	04/23/2016	6.1	N/A	Monitoring and Test Hole
71.	7263650	04/23/2016	6.1	N/A	Monitoring and Test Hole
72.	7286766	N/A	N/A	N/A	N/A
73.	7318608	06/14/2018	N/A	N/A	N/A
74.	7322522	05/17/2018	6.1	N/A	Monitoring and Test Hole
75.	7322523	05/17/2018	5	N/A	Monitoring and Test Hole
76.	7322524	05/17/2018	6.4	N/A	Monitoring and Test Hole
77.	7325283	09/11/2018	N/A	N/A	N/A
78.	7327366	08/29/2018	N/A	N/A	N/A
79.	7329556	01/04/2019	16.8	N/A	Monitoring and Test Hole
80.	7343775	09/05/2019	N/A	N/A	N/A
81.	7374253	10/29/2020	N/A	N/A	N/A
82.	7376602	08/13/2020	N/A	N/A	N/A
83.	7381731	02/02/2021	N/A	N/A	N/A
84.	7381732	02/02/2021	N/A	N/A	N/A
85.	7384388	01/26/2021	6.1	N/A	Observation well
86.	7384399	01/26/2021	7.6	N/A	Observation well
87.	7384402	01/26/2021	6.1	N/A	Observation well

Count	Well ID	Date Completed	Depth (m)	Reported Water Level (m)	Status of Well
88.	7393298	07/09/2021	N/A	N/A	Abandoned - Other
89.	7393299	06/25/2021	N/A	N/A	Abandoned - Other
90.	7393335	06/25/2021	N/A	2.1	Abandoned - Other
91.	7393339	06/25/2021	N/A	2.9	Abandoned - Other
92.	7393340	06/25/2021	N/A	1.8	Abandoned - Other
93.	7393341	06/25/2021	N/A	1.7	Abandoned - Other
94.	7405067	10/08/2021	22.9	N/A	Observation well
95.	7405068	10/08/2021	15.2	N/A	Observation well
96.	7405069	10/08/2021	4.9	N/A	Observation well
97.	7405070	10/08/2021	7	N/A	Observation well
98.	7405071	10/08/2021	7.3	N/A	Observation well
99.	7412585	02/17/2022	6.1	4.57	Observation well
100.	7412588	02/17/2022	8.2	6.1	Observation well
101.	7412591	02/17/2022	6.7	4.57	Observation well

Table B-2: MECP EASR Summary Table

Permit Number	Purpose	Address	Municipality	Water Source	Max L/Day	Active
2560- A5PKQW	Dewatering construction	477 Maple Avenue	Oakville	Groundwater	390,000	No
62-P-17	Lake	491 River Side Drive	Oakville	Surface water	1,083,940	No
0772-AF3HTJ	Dewatering	Canadian National Railway and Cross Avenue	Oakville	Groundwater	20,000 to 400,000	No
2668- 6TRQ7G	Dewatering construction	Northeast of Queen Elizabeth Way (Hwy 403) and Kerr Street	Oakville	Groundwater	1,962,744	No
4375-6NYL7V	Dewatering construction	Northeast of Queen Elizabeth Way (Hwy 403) and Kerr Street	Oakville	Groundwater	1,962,744	No
0551-72YPT5	Dewatering construction	Northeast of Queen Elizabeth Way (Hwy 403) and Kerr Street	Oakville	Groundwater	1,962,744	No
8107-9KKLR9	Dewatering construction	Queen Elizabeth Way (Hwy 403), north of South Service Road East, southwest of Chartwell Road	Oakville	Surface water	449,280,000 to 1,168,128,000	No
R-009- 2112317313	Construction dewatering	547 Trafalgar Road	Oakville	Groundwater	50,000 to 400,000	No
R-009- 9112436776	Construction dewatering	Trans-Northern Pipelines Inc.	Oakville	Groundwater	50,000 to 400,000	No

APPENDIX C: SWRT RESULTS

APPENDIX D: WATER QUALITY LABORATORY CERTIFICATE OF ANALYSIS AND CHAIN OF CUSTODY

Your Project #: BIGC-ENV-554A Your C.O.C. #: 881898-01-01

Attention: Eileen Liu

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2022/06/12 Report #: R7164264 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2F2517 Received: 2022/06/03, 19:47

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Sewer Use By-Law Semivolatile Organics	1	2022/06/07	2022/06/08	CAM SOP 00301	EPA 8270 m
Biochemical Oxygen Demand (BOD)	1	2022/06/06	2022/06/11	CAM SOP-00427	SM 23 5210B m
Carbonaceous BOD	1	2022/06/06	2022/06/11	CAM SOP-00427	SM 23 5210B m
Chromium (VI) in Water	1	N/A	2022/06/07	CAM SOP-00436	EPA 7199 m
Total Cyanide	1	2022/06/04	2022/06/04	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2022/06/04	2022/06/07	CAM SOP-00449	SM 23 4500-F C m
Mercury in Water by CVAA	1	2022/06/07	2022/06/07	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by Axial ICP	1	2022/06/09	2022/06/09	CAM SOP-00408	EPA 6010D m
Total Metals Analysis by ICPMS	1	N/A	2022/06/09	CAM SOP-00447	EPA 6020B m
E.coli, (CFU/100mL)	1	N/A	2022/06/03	CAM SOP-00552	MOE LSB E3371
Total Nonylphenol in Liquids by HPLC	1	2022/06/05	2022/06/07	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	1	2022/06/05	2022/06/07	CAM SOP-00313	In-house Method
Animal and Vegetable Oil and Grease	1	N/A	2022/06/10	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2022/06/09	2022/06/09	CAM SOP-00326	EPA1664B m,SM5520B m
OC Pesticides (Selected) & PCB (1)	1	2022/06/06	2022/06/07	CAM SOP-00307	EPA 8081A/8082B m
OC Pesticides Summed Parameters	1	N/A	2022/06/04	CAM SOP-00307	EPA 8081A/8082B m
рН	1	2022/06/04	2022/06/07	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2022/06/07	CAM SOP-00444	OMOE E3179 m
Sulphate by Automated Colourimetry	1	N/A	2022/06/09	CAM SOP-00464	EPA 375.4 m
Total Kjeldahl Nitrogen in Water	1	2022/06/07	2022/06/09	CAM SOP-00938	OMOE E3516 m
Total PAHs (2)	1	N/A	2022/06/08	CAM SOP - 00301	
Mineral/Synthetic O & G (TPH Heavy Oil) (3)	1	2022/06/09	2022/06/09	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2022/06/08	2022/06/09	CAM SOP-00428	SM 23 2540D m
Volatile Organic Compounds in Water	1	N/A	2022/06/07	CAM SOP-00228	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in

Page 1 of 16

Your Project #: BIGC-ENV-554A Your C.O.C. #: 881898-01-01

Attention: Eileen Liu

B.I.G Consulting Inc. 12-5500 Tomken Road Mississauga, ON CANADA L4W 2Z4

> Report Date: 2022/06/12 Report #: R7164264 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2F2517

Received: 2022/06/03, 19:47

writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane

(2) Total PAHs include only those PAHs specified in the sewer use by-by-law.

(3) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Deepthi Shaji, Project Manager Email: Deepthi.Shaji@bureauveritas.com Phone# (905)817-5700 Ext:7065843

· · ·

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 16

HALTON SANITARY & COMBINED BYLAW (2-03)

Bureau Veritas ID					SUN780		
Sampling Date					2022/06/03 05:00		
COC Number					881898-01-01		
	UNITS	Criteria	Criteria B	Criteria-2	BH/MW1	RDL	QC Batch
Calculated Parameters							
Total Animal/Vegetable Oil and Grease	mg/L	150	-	-	ND	0.50	8033291
Inorganics	•						
Total Carbonaceous BOD	mg/L	300	-	-	ND	2	8036062
Fluoride (F-)	mg/L	10	-	-	0.41	0.10	8034172
Total Kjeldahl Nitrogen (TKN)	mg/L	100	-	-	2.2	0.10	8038660
рН	рН	6.0:10.0	6.5:8.5	6.5:8.5	7.85		8034173
Phenols-4AAP	mg/L	1	-	0.008	ND	0.0010	8037445
Total Suspended Solids	mg/L	350	-	15	110	10	8035930
Dissolved Sulphate (SO4)	mg/L	1500	-	-	250	1.0	8035929
Total Cyanide (CN)	mg/L	2	-	0.02	ND	0.0050	8034252
Petroleum Hydrocarbons							
Total Oil & Grease	mg/L	-	-	-	ND	0.50	8043541
Total Oil & Grease Mineral/Synthetic	mg/L	-	-	-	ND	0.50	8043548
Metals							
Total Aluminum (Al)	mg/L	50	-	-	0.6	0.1	8042315
Total Antimony (Sb)	mg/L	5	-	-	ND	0.02	8042315
Total Arsenic (As)	mg/L	1	-	0.02	ND	0.01	8042315
Total Beryllium (Be)	mg/L	5	-	-	ND	0.0005	8042315
Total Cadmium (Cd)	mg/L	1	-	0.008	ND	0.002	8042315
Total Chromium (Cr)	mg/L	3	-	0.08	ND	0.01	8042315
Total Cobalt (Co)	mg/L	5	-	-	ND	0.002	8042315
Total Copper (Cu)	mg/L	3	-	0.04	ND	0.01	8042315
Total Iron (Fe)	mg/L	50	-	-	3.2	0.02	8042315
Total Lead (Pb)	mg/L	3	-	0.12	ND	0.01	8042315
Total Manganese (Mn)	mg/L	5	-	0.05	0.20	0.001	8042315
Mercury (Hg)	mg/L	0.05	-	0.0004	ND	0.00010	8037167
Total Molybdenum (Mo)	mg/L	5	-	-	ND	0.005	8042315
Total Nickel (Ni)	mg/L	3	-	0.08	ND	0.005	8042315
Total Phosphorus (P)	mg/L	10	-	0.4	ND	0.05	8042315
No Fill No Exceedance							

Grey Black

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria, Criteria B: Halton Sanitary and Storm sewer by-law

Criteria-2: The Town of Oakville Storm Sewer Discharge By Law 2009-031

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Page 3 of 16

HALTON SANITARY & COMBINED BYLAW (2-03)

Bureau Veritas ID						SUN780		
Sampling Date						2022/06/03 05:00		
COC Number						881898-01-01		
		UNITS	Criteria	Criteria B	Criteria-2	BH/MW1	RDL	QC Batch
Total Selenium (Se)		mg/L	5	-	0.02	ND	0.02	8042315
Total Silver (Ag)		mg/L	5	-	0.12	ND	0.01	8042315
Total Tin (Sn)		mg/L	5		-	ND	0.02	8042315
Total Titanium (Ti)		mg/L	5	-	-	ND	0.005	8042315
Total Zinc (Zn)		mg/L	3		0.04	ND	0.005	8042315
Volatile Organics								
Benzene		ug/L	10	-	2	2.4	0.40	8034119
Chloroform		ug/L	40	-	2	ND	0.40	8034119
1,2-Dichlorobenzen	ie	ug/L	-	-	5.6	ND	0.80	8034119
1,4-Dichlorobenzen	ie	ug/L	80	-	6.8	ND	0.80	8034119
cis-1,2-Dichloroethy	ylene	ug/L	-	-	5.6	ND	1.0	8034119
trans-1,3-Dichlorop	ropene	ug/L	-	-	5.6	ND	0.80	8034119
Ethylbenzene		ug/L	160	-	2	ND	0.40	8034119
Methylene Chloride	e(Dichloromethane)	ug/L	2000	-	5.2	ND	4.0	8034119
1,1,2,2-Tetrachloro	ethane	ug/L	-	-	17	ND	0.80	8034119
Tetrachloroethylen	e	ug/L	1000	-	4.4	ND	0.40	8034119
Toluene		ug/L	16	-	2	ND	0.40	8034119
Trichloroethylene		ug/L	400	-	7.6	ND	0.40	8034119
Total Xylenes		ug/L	-	-	4.4	ND	0.40	8034119
Surrogate Recovery	y (%)							
4-Bromofluorobenz	zene	%	-	-	-	98	[8034119
D4-1,2-Dichloroeth	ane	%	-	-	-	104		8034119
D8-Toluene		%	-	-	-	96		8034119
No Fill	No Exceedance							
Grey	Exceeds 1 criteria p	olicy/le	vel					
Black Exceeds both criter		ria/level:	S					
Black Exceeds both chter								

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria, Criteria B: Halton Sanitary and Storm sewer by-law

Criteria-2: The Town of Oakville Storm Sewer Discharge By Law 2009-031

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

OAKVILLE STORM SEWER BYLAW (2009-031)

Bureau Veritas ID					SUN780		
Sampling Date					2022/06/03		
Sampling Date		<u> </u>	<u> </u>		05:00		
COC Number					881898-01-01		
	UNITS	Criteria	Criteria B	Criteria-2	BH/MW1	RDL	QC Batch
Inorganics							
Total BOD	mg/L	-	-	15	ND	2	8036060
Miscellaneous Parameters		<u> </u>					
Nonylphenol Ethoxylate (Total)	mg/L	-	-	0.01	ND	0.005	8034479
Nonylphenol (Total)	mg/L	<u> </u>	-	0.001	ND	0.001	8034478
Metals		<u> </u>					
Chromium (VI)	ug/L	-	-	40	ND	0.50	8034995
Total Arsenic (As)	ug/L	1000	-	20	1.2	1.0	8042314
Total Cadmium (Cd)	ug/L	1000	<u> </u>	8	ND	0.090	8042314
Total Chromium (Cr)	ug/L	3000	-	80	ND	5.0	8042314
Total Copper (Cu)	ug/L	3000	-	40	4.4	0.90	8042314
Total Lead (Pb)	ug/L	3000	-	120	ND	0.50	8042314
Total Manganese (Mn)	ug/L	5000	-	50	200	2.0	8042314
Total Nickel (Ni)	ug/L	3000	-	80	1.8	1.0	8042314
Total Phosphorus (P)	ug/L	10000	-	400	ND	100	8042314
Total Selenium (Se)	ug/L	5000	<u> </u>	20	ND	2.0	8042314
Total Silver (Ag)	ug/L	5000	-	120	ND	0.090	8042314
Total Zinc (Zn)	ug/L	3000	-	40	6.6	5.0	8042314
Semivolatile Organics				. <u> </u>			
Naphthalene	ug/L	140		-	ND	0.3	8036992
Di-N-butyl phthalate	ug/L	<u> </u>	-	15	ND	2	8036992
Bis(2-ethylhexyl)phthalate	ug/L	<u> </u>	-	8.8	ND	2	8036992
3,3'-Dichlorobenzidine	ug/L	<u> </u>		0.8	ND	0.8	8036992
Pentachlorophenol	ug/L	<u> </u>	-	2	ND	1	8036992
Phenanthrene	ug/L	<u> </u>	-	-	ND	0.2	8036992
Anthracene	ug/L	-	-	-	ND	0.2	8036992
Fluoranthene	ug/L	<u> </u>	-	-	ND	0.2	8036992
Pyrene	ug/L	<u> </u>	-	-	ND	0.2	8036992
Benzo(a)anthracene	ug/L	-	-	-	ND	0.2	8036992
Chrysene	ug/L	-	-	-	ND	0.2	8036992
No Fill No Exceeda	ince						
Grey Exceeds 1 c	riteria policy/	level					
Black Exceeds bo	th criteria/lev	els					
RDL = Reportable Detection Lim	it						
QC Batch = Quality Control Batc	h						
Criteria, Criteria B: Halton Sanita	ry and Storm	sewer by-	law				
Criteria-2: The Town of Oakville	Storm Sewer	Discharge	By Law 20	09-031			
ND = Not Detected at a concent	ration equal c	or greater	than the in	dicated Det	ection Limit.		

Page 5 of 16

OAKVILLE STORM SEWER BYLAW (2009-031)

Bureau Veritas ID						SUN780					
Sampling Date						2022/06/03 05:00					
COC Number						881898-01-01					
		UNITS	Criteria	Criteria B	Criteria-2	BH/MW1	RDL	QC Batch			
Benzo(b/j)fluoranth	nene	ug/L	-	-	-	ND	0.2	8036992			
Benzo(k)fluoranthe	ne	ug/L	-	-	-	ND	0.2	8036992			
Benzo(a)pyrene		ug/L	g/L ND		ND	0.2	8036992				
Indeno(1,2,3-cd)py	rene	ug/L	-	-	-	ND	0.2	8036992			
Dibenzo(a,h)anthra	cene	ug/L	-	-	-	ND	0.2	8036992			
Benzo(g,h,i)perylen	е	ug/L	-	-	-	ND	0.2	8036992			
Dibenzo(a,i)pyrene		ug/L	-	-	-	ND	0.2	8036992			
Benzo(e)pyrene		ug/L	-	-	-	ND	0.2	8036992			
Perylene		ug/L	-	-	-	ND	0.2	8036992			
Dibenzo(a,j) acridin	е	ug/L	-	-	-	ND	0.4	8036992			
7H-Dibenzo(c,g) Ca	rbazole	ug/L	-	-	-	ND	0.4	8036992			
1,6-Dinitropyrene		ug/L	-	-	-	ND	0.4	8036992			
1,3-Dinitropyrene		ug/L	-	-	-	ND	0.4	8036992			
1,8-Dinitropyrene		ug/L	-	-	-	ND	0.4	8036992			
Calculated Parame	ters										
Total PAHs (18 PAH	s)	ug/L	-	-	2	ND	1	8032665			
Pesticides & Herbio	cides										
Aldrin		ug/L	-	-	-	ND	0.005	8034785			
Dieldrin		ug/L	-	-	-	ND	0.005	8034785			
a-Chlordane		ug/L	-	-	-	ND	0.005	8034785			
g-Chlordane		ug/L	-	-	-	ND	0.005	8034785			
o,p-DDT		ug/L	-	-	0.04	ND	0.005	8034785			
p,p-DDT		ug/L	-	-	0.04	ND	0.005	8034785			
Lindane		ug/L	-	-	40	ND	0.003	8034785			
Hexachlorobenzene	2	ug/L	-	-	0.04	ND	0.005	8034785			
Mirex		ug/L	-	-	40	ND	0.005	8034785			
Microbiological											
Escherichia coli	6.0	CFU/100mL	-	200	200	<10	10	8033562			
Surrogate Recovery	y (%)										
2,4,6-Tribromophei	nol	%	-	-	-	100		8036992			
No Fill	No Exceedar	nce									
Grey Exceeds 1 criteria policy/level											
Black Exceeds both criteria/levels											
RDL = Reportable D	etection Limi	t									
QC Batch = Quality	Control Batch	n									
Criteria, Criteria B: H	Halton Sanitar	y and Storm s	sewer by-	law							
Criteria-2: The Tow	n of Oakville S	Storm Sewer I	Discharge	By Law 20	09-031						
ND = Not Detected	at a concentr	ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.									

Page 6 of 16

OAKVILLE STORM SEWER BYLAW (2009-031)

Bureau Veritas ID	Bureau Veritas ID SUN780								
Sampling Date						2022/06/03 05:00			
COC Number						881898-01-01			
		UNITS	Criteria	Criteria B	Criteria-2	BH/MW1	RDL	QC Batch	
2-Fluorobiphenyl		%	-	-	-	70		8036992	
D14-Terphenyl (F	S)	%	-	-	-	63		8036992	
D5-Nitrobenzene	%	-	-	-	79		8036992		
D8-Acenaphthyle	%	-	-	-	72		8036992		
2,4,5,6-Tetrachlor	ro-m-xylene	%	-	-	-	87		8034785	
Decachlorobipher	nyl	%	-		-	93		8034785	
No Fill	No Exceedar	nce							
Grey	Exceeds 1 cr	iteria policy/l	evel						
Black	Exceeds bot	h criteria/leve	els						
RDL = Reportable	= Reportable Detection Limit								
QC Batch = Qualit	y Control Batch	ı							
Criteria, Criteria B: Halton Sanitary and Storm sewer by-law									
Criteria-2: The To	wn of Oakville	Storm Sewer	Discharge	By Law 20	09-031				

Bureau Verita	s ID			SUN780				
Sampling Date	9			2022/06/03				
COC Number				881898-01-01				
		UNITS	Criteria	BH/MW1	RDL	QC Batch		
Calculated Pa	rameters							
Aldrin + Dieldr	rin	ug/L	0.08	ND	0.005	8032139		
Chlordane (To	ug/L	40	ND	0.005	8032139			
DDT+ Metabo	ug/L	-	ND	0.005	8032139			
Heptachlor + H	ug/L	-	ND	0.005	8032139			
o,p-DDD + p,p	ug/L	-	ND	0.005	8032139			
o,p-DDE + p,p·	-DDE	ug/L	-	ND	0.005	8032139		
o,p-DDT + p,p-	-DDT	ug/L	-	ND	0.005	8032139		
Total Endosulf	fan	ug/L	-	ND	0.005	8032139		
Total PCB		ug/L	0.4	ND	0.05	8032139		
No Fill	No Exceedance	•						
Grey	Exceeds 1 criteria	policy/le	evel					
Black	Exceeds both crite	ria/leve	ls					
RDL = Reporta	ble Detection Limit							
QC Batch = Quality Control Batch								
Criteria: The T	own of Oakville Stor	m Sewe	r Dischar	ge By Law 2009-	031			
ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.								

ORGANOCHLORINATED PESTICIDES BY GC-ECD (WATER)

GENERAL COMMENTS

Each te	emperature is the ave	erage of up to th	ree cooler temperatures taken at receipt
	Package 1	18.0°C]
Sample	SUN780 [BH/MW1]	: VOC Analysis	Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.
Results	relate only to the it	ems tested.	

QUALITY ASSURANCE REPORT

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554A Sampler Initials: MM

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8034119	4-Bromofluorobenzene	2022/06/07	103	70 - 130	100	70 - 130	98	%				
8034119	D4-1,2-Dichloroethane	2022/06/07	104	70 - 130	99	70 - 130	98	%				
8034119	D8-Toluene	2022/06/07	96	70 - 130	100	70 - 130	98	%				
8034785	2,4,5,6-Tetrachloro-m-xylene	2022/06/07	88	50 - 130	83	50 - 130	62	%				
8034785	Decachlorobiphenyl	2022/06/07	85	50 - 130	119	50 - 130	75	%				
8036992	2,4,6-Tribromophenol	2022/06/07	97	10 - 130	106	10 - 130	95	%				
8036992	2-Fluorobiphenyl	2022/06/07	73	30 - 130	73	30 - 130	64	%				
8036992	D14-Terphenyl (FS)	2022/06/07	59	30 - 130	76	30 - 130	75	%				
8036992	D5-Nitrobenzene	2022/06/07	71	30 - 130	76	30 - 130	69	%				
8036992	D8-Acenaphthylene	2022/06/07	70	30 - 130	73	30 - 130	67	%				
8034119	1,1,2,2-Tetrachloroethane	2022/06/07	103	70 - 130	94	70 - 130	ND, RDL=0.40	ug/L	NC	30		
8034119	1,2-Dichlorobenzene	2022/06/07	96	70 - 130	92	70 - 130	ND, RDL=0.40	ug/L	NC	30		
8034119	1,4-Dichlorobenzene	2022/06/07	105	70 - 130	102	70 - 130	ND, RDL=0.40	ug/L	NC	30		
8034119	Benzene	2022/06/07	94	70 - 130	89	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8034119	Chloroform	2022/06/07	97	70 - 130	94	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8034119	cis-1,2-Dichloroethylene	2022/06/07	98	70 - 130	95	70 - 130	ND, RDL=0.50	ug/L	NC	30		
8034119	Ethylbenzene	2022/06/07	89	70 - 130	87	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8034119	Methylene Chloride(Dichloromethane)	2022/06/07	106	70 - 130	101	70 - 130	ND, RDL=2.0	ug/L	NC	30		
8034119	Tetrachloroethylene	2022/06/07	87	70 - 130	86	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8034119	Toluene	2022/06/07	89	70 - 130	90	70 - 130	ND, RDL=0.20	ug/L	7.1	30		
8034119	Total Xylenes	2022/06/07					ND, RDL=0.20	ug/L	11	30		
8034119	trans-1,3-Dichloropropene	2022/06/07	95	70 - 130	89	70 - 130	ND, RDL=0.40	ug/L	NC	30		
8034119	Trichloroethylene	2022/06/07	100	70 - 130	97	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8034172	Fluoride (F-)	2022/06/07	100	80 - 120	109	80 - 120	ND, RDL=0.10	mg/L	0.96	20		
8034173	рН	2022/06/07			101	98 - 103			2.3	N/A		
8034252	Total Cyanide (CN)	2022/06/04	87	80 - 120	99	80 - 120	ND, RDL=0.0050	mg/L	NC	20		
8034478	Nonylphenol (Total)	2022/06/06	104	50 - 130	103	50 - 130	ND, RDL=0.001	mg/L	NC	40		
8034479	Nonylphenol Ethoxylate (Total)	2022/06/06	91	50 - 130	86	50 - 130	ND, RDL=0.005	mg/L	NC	40		

Page 10 of 16

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554A Sampler Initials: MM

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8034785	a-Chlordane	2022/06/07	95	50 - 130	97	50 - 130	ND, RDL=0.005	ug/L	NC	30		
8034785	Aldrin	2022/06/07	99	50 - 130	93	50 - 130	ND, RDL=0.005	ug/L	NC	30		
8034785	Dieldrin	2022/06/07	88	50 - 130	117	50 - 130	ND, RDL=0.005	ug/L	NC	30		
8034785	g-Chlordane	2022/06/07	97	50 - 130	93	50 - 130	ND, RDL=0.005	ug/L	NC	30		
8034785	Hexachlorobenzene	2022/06/07	86	50 - 130	92	50 - 130	ND, RDL=0.005	ug/L	NC	30		
8034785	Lindane	2022/06/07	88	50 - 130	92	50 - 130	ND, RDL=0.003	ug/L	NC	30		
8034785	Mirex	2022/06/07	73	30 - 130	104	30 - 130	ND, RDL=0.005	ug/L	NC	40		
8034785	o,p-DDT	2022/06/07	57	50 - 130	108	50 - 130	ND, RDL=0.005	ug/L	NC	30		
8034785	p,p-DDT	2022/06/07	117	50 - 130	117	50 - 130	ND, RDL=0.005	ug/L	NC	30		
8034995	Chromium (VI)	2022/06/07	100	80 - 120	103	80 - 120	ND, RDL=0.50	ug/L	NC	20		
8035929	Dissolved Sulphate (SO4)	2022/06/09	127 (1)	75 - 125	103	80 - 120	ND, RDL=1.0	mg/L	NC	20		
8035930	Total Suspended Solids	2022/06/09					ND, RDL=10	mg/L	3.5	25	100	85 - 115
8036060	Total BOD	2022/06/11					ND,RDL=2	mg/L	0.77	30	97	80 - 120
8036062	Total Carbonaceous BOD	2022/06/11					ND,RDL=2	mg/L	NC	30	94	85 - 115
8036992	1,3-Dinitropyrene	2022/06/07	66	30 - 130	99	30 - 130	ND, RDL=0.4	ug/L				
8036992	1,6-Dinitropyrene	2022/06/07	67	30 - 130	96	30 - 130	ND, RDL=0.4	ug/L				
8036992	1,8-Dinitropyrene	2022/06/07	65	30 - 130	96	30 - 130	ND, RDL=0.4	ug/L				
8036992	3,3'-Dichlorobenzidine	2022/06/07	23 (1)	30 - 130	80	30 - 130	ND, RDL=0.8	ug/L	NC	40		
8036992	7H-Dibenzo(c,g) Carbazole	2022/06/07	88	30 - 130	89	30 - 130	ND, RDL=0.4	ug/L	NC	40		
8036992	Anthracene	2022/06/07	80	30 - 130	89	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8036992	Benzo(a)anthracene	2022/06/07	79	30 - 130	92	30 - 130	0.2, RDL=0.2 (2)	ug/L	NC	40		
8036992	Benzo(a)pyrene	2022/06/07	81	30 - 130	101	30 - 130	0.3, RDL=0.2	ug/L	NC	40		

Page 11 of 16

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554A Sampler Initials: MM

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8036992	Benzo(b/j)fluoranthene	2022/06/07	87	30 - 130	103	30 - 130	0.7, RDL=0.2	ug/L	NC	40		
8036992	Benzo(e)pyrene	2022/06/07	86	30 - 130	105	30 - 130	0.4, RDL=0.2	ug/L	NC	40		
8036992	Benzo(g,h,i)perylene	2022/06/07	105	30 - 130	113	30 - 130	0.5, RDL=0.2	ug/L	NC	40		
8036992	Benzo(k)fluoranthene	2022/06/07	93	30 - 130	100	30 - 130	0.4, RDL=0.2	ug/L	NC	40		
8036992	Bis(2-ethylhexyl)phthalate	2022/06/07	74	30 - 130	83	30 - 130	ND,RDL=2	ug/L	NC	40		
8036992	Chrysene	2022/06/07	99	30 - 130	108	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8036992	Dibenzo(a,h)anthracene	2022/06/07	104	30 - 130	113	30 - 130	0.4, RDL=0.2	ug/L	NC	40		
8036992	Dibenzo(a,i)pyrene	2022/06/07	78	30 - 130	86	30 - 130	0.2, RDL=0.2	ug/L	NC	40		
8036992	Dibenzo(a,j) acridine	2022/06/07	95	30 - 130	93	30 - 130	ND, RDL=0.4	ug/L	NC	40		
8036992	Di-N-butyl phthalate	2022/06/07	76	30 - 130	89	30 - 130	ND,RDL=2	ug/L	NC	40		
8036992	Fluoranthene	2022/06/07	81	30 - 130	98	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8036992	Indeno(1,2,3-cd)pyrene	2022/06/07	112	30 - 130	115	30 - 130	0.4, RDL=0.2	ug/L	NC	40		
8036992	Naphthalene	2022/06/07	66	30 - 130	66	30 - 130	ND, RDL=0.3	ug/L				
8036992	Pentachlorophenol	2022/06/07	65	30 - 130	66	30 - 130	ND,RDL=1	ug/L	NC	40		
8036992	Perylene	2022/06/07	92	30 - 130	82	30 - 130	0.4, RDL=0.2	ug/L	NC	40		
8036992	Phenanthrene	2022/06/07	83	30 - 130	91	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8036992	Pyrene	2022/06/07	80	30 - 130	98	30 - 130	ND, RDL=0.2	ug/L	NC	40		
8037167	Mercury (Hg)	2022/06/07	89	75 - 125	91	80 - 120	ND, RDL=0.00010	mg/L	NC	20		
8037445	Phenols-4AAP	2022/06/07	97	80 - 120	99	80 - 120	ND, RDL=0.0010	mg/L	NC	20		
8038660	Total Kjeldahl Nitrogen (TKN)	2022/06/09	NC	80 - 120	105	80 - 120	ND, RDL=0.10	mg/L	0.071	20	105	80 - 120
8042314	Total Arsenic (As)	2022/06/09	99	80 - 120	96	80 - 120	ND, RDL=1.0	ug/L	4.4	20		
8042314	Total Cadmium (Cd)	2022/06/09	101	80 - 120	98	80 - 120	ND, RDL=0.090	ug/L	NC	20		
8042314	Total Chromium (Cr)	2022/06/09	98	80 - 120	95	80 - 120	ND, RDL=5.0	ug/L	NC	20		
8042314	Total Copper (Cu)	2022/06/09	102	80 - 120	96	80 - 120	ND, RDL=0.90	ug/L	NC	20		
8042314	Total Lead (Pb)	2022/06/09	92	80 - 120	91	80 - 120	ND, RDL=0.50	ug/L	NC	20		
8042314	Total Manganese (Mn)	2022/06/09	99	80 - 120	98	80 - 120	ND, RDL=2.0	ug/L	5.4	20		
8042314	Total Nickel (Ni)	2022/06/09	98	80 - 120	96	80 - 120	ND, RDL=1.0	ug/L	6.1	20		
8042314	Total Phosphorus (P)	2022/06/09	101	80 - 120	106	80 - 120	ND, RDL=100	ug/L	NC	20		

Page 12 of 16

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554A Sampler Initials: MM

			Matrix Spike SPIKED		BLANK Method B		thod Blank RPI		O QC Standard		andard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8042314	Total Selenium (Se)	2022/06/09	104	80 - 120	102	80 - 120	ND, RDL=2.0	ug/L	NC	20		
8042314	Total Silver (Ag)	2022/06/09	99	80 - 120	97	80 - 120	ND, RDL=0.090	ug/L	NC	20		
8042314	Total Zinc (Zn)	2022/06/09	101	80 - 120	100	80 - 120	ND, RDL=5.0	ug/L	NC	20		
8042315	Total Aluminum (Al)	2022/06/09	100	80 - 120	101	80 - 120	ND, RDL=0.1	mg/L				
8042315	Total Antimony (Sb)	2022/06/09	110	80 - 120	107	80 - 120	ND, RDL=0.02	mg/L				
8042315	Total Arsenic (As)	2022/06/09	108	80 - 120	104	80 - 120	ND, RDL=0.01	mg/L	NC	20		
8042315	Total Beryllium (Be)	2022/06/09	104	80 - 120	104	80 - 120	ND, RDL=0.0005	mg/L				
8042315	Total Cadmium (Cd)	2022/06/09	106	80 - 120	103	80 - 120	ND, RDL=0.002	mg/L	NC	20		
8042315	Total Chromium (Cr)	2022/06/09	108	80 - 120	105	80 - 120	ND, RDL=0.01	mg/L	NC	20		
8042315	Total Cobalt (Co)	2022/06/09	104	80 - 120	102	80 - 120	ND, RDL=0.002	mg/L				
8042315	Total Copper (Cu)	2022/06/09	102	80 - 120	102	80 - 120	ND, RDL=0.01	mg/L	16	20		
8042315	Total Iron (Fe)	2022/06/09	105	80 - 120	106	80 - 120	ND, RDL=0.02	mg/L				
8042315	Total Lead (Pb)	2022/06/09	103	80 - 120	102	80 - 120	ND, RDL=0.01	mg/L	NC	20		
8042315	Total Manganese (Mn)	2022/06/09	101	80 - 120	102	80 - 120	ND, RDL=0.001	mg/L	0	20		
8042315	Total Molybdenum (Mo)	2022/06/09	106	80 - 120	104	80 - 120	ND, RDL=0.005	mg/L				
8042315	Total Nickel (Ni)	2022/06/09	104	80 - 120	103	80 - 120	ND, RDL=0.005	mg/L	NC	20		
8042315	Total Phosphorus (P)	2022/06/09	99	80 - 120	99	80 - 120	ND, RDL=0.05	mg/L	1.7	20		
8042315	Total Selenium (Se)	2022/06/09	106	80 - 120	103	80 - 120	ND, RDL=0.02	mg/L	NC	20		
8042315	Total Silver (Ag)	2022/06/09	99	80 - 120	99	80 - 120	ND, RDL=0.01	mg/L	NC	20		
8042315	Total Tin (Sn)	2022/06/09	105	80 - 120	103	80 - 120	ND, RDL=0.02	mg/L				
8042315	Total Titanium (Ti)	2022/06/09	102	80 - 120	103	80 - 120	ND, RDL=0.005	mg/L				
8042315	Total Zinc (Zn)	2022/06/09	103	80 - 120	103	80 - 120	ND, RDL=0.005	mg/L	5.6	20		
8043541	Total Oil & Grease	2022/06/09			99	85 - 115	ND, RDL=0.50	mg/L	0.51	25		

Page 13 of 16

B.I.G Consulting Inc. Client Project #: BIGC-ENV-554A Sampler Initials: MM

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8043548	Total Oil & Grease Mineral/Synthetic	2022/06/09			97	85 - 115	ND, RDL=0.50	mg/L	0.52	25		
N/A = Not A	N/A = Not Applicable											
Duplicate: P	aired analysis of a separate portion of the same s	sample. Used to	evaluate the	variance in t	the measurem	ent.						
Matrix Spike	: A sample to which a known amount of the anal	yte of interest h	nas been adde	ed. Used to e	evaluate samp	le matrix int	erference.					
QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.												
Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.												
Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.												
Surrogate: A	A pure or isotopically labeled compound whose b	ehavior mirrors	the analytes	of interest. l	Jsed to evalua	te extractio	n efficiency.					
NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)												
NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).												
(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.												
(2) The flagged analytes were detected in the method blank above the detection limit. Sample results have not been blank corrected. The results may be biased high. For results that were not detected (ND), this potential bias has no impact.												

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

auistin Camiere

Cristina Carriere, Senior Scientific Specialist

Sonja Elavinamannil, Master of Biochemistry, Team Lead

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Exceedance Summary Table – Halton Storm and Sanitary

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summar	y table is for information purp	oses only and should r	not be considered a comprehe	ensive listing c	or statement of co	onformance to
applicable regulatory gui	delines.					

Exceedance Summary Table – Oakville Storm Sewer

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS			
BH/MW1	SUN780-06	Benzene	2	2.4	0.40	ug/L			
BH/MW1	SUN780-12	Total Manganese (Mn)	0.05	0.20	0.001	mg/L			
BH/MW1	SUN780-12	Total Manganese (Mn)	50	200	2.0	ug/L			
BH/MW1	SUN780-08	Total Suspended Solids	15	110	10	mg/L			
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to									
applicable regulatory guid	elines.								

_	INVOICE TO: REPORT TO:							PROJECT INFORMATIO					Only:					
mpany Nam	#31796 B.I.G Cor	sulting Inc.		Company	Name: BIG	Consul fi	ng .			0	Quotation # C12477						Bureau Veritas Job #:	Bottle Order #:
intion:	Accounts Payable	haad		Attention	Eileen	Liu	120	~ 1		P	P.O. #:							A MANAGAMANAN ING ING
ress	Mississauga ON L	W 274		Address:	Tress: 10-900 Tonten Com Im 19915 augua			Grade P	Project: BIGC-ENV-554A					-		881898		
	(416) 214-4880	Fax		Tel	ul-	211-48	Eav.	-	-	F	roject Name	e:			-	10000	COC #:	Project Manager
il:	Idougherty@brown	fieldigi.com;admin	@brownfieldigi.	CO Email:	eliu@b	rownfieldigi.c	om			5	ampled By:		MATRI	1			C#881898-01-01	Deepthi Shaji
MOE RE	GULATED DRINKING	WATER OR WATER	INTENDED FO	R HUMAN C	ONSUMPTION	MUST BE	-	-	-	ANAL	YSIS REQU	JESTED (PLEA	SE BE SPECIFIC)			Turnaround Time (TAT) R	equired
Regul	Non 163 (2011)		ther Pequiations	ITEN OF MAN	Checostobi		(e):	W (2-	¢							Regular (S	tandard) TAT:	r rush projects
ble 1	Res/Park Medium/F		Sanitary Sewer By	viaw	Special In	Special Instructions 10 5 6002								(will be applie	d if Rush TAT is not specified):			
ble 2	Ind/Comm Coarse	Reg 558.	Storm Sewer Byla	w /			ease	pined	Bylaw					Standard TAT	= 5-7 Working days for most tests.			
ble 3	Agri/Other For RSC	MISA N	funicipality Ha	to A/Gakui	e		bH BH	Com	wer							days - contact	standard TAT for certain fests such as B your Project Manager for details.	DD and Dioxins/Furans are
-	-	PWQ0 L	Reg 406 Table				Itere tals /	ary &	S.E.							Job Specifie	Rush TAT (if applies to entire subm	nission)
	Include Criteria	Cortificate of Anal		-			Met	Sanit	e Sto							Rush Confirm	ItTim lation Number:	te Required:
Sam	ple Barcode Label	Sample (Location) Ide	antification	Date Sampled	Time Sampled	Matrix	- 12	alton 3)	atvill	r						# of Bottles	(6	all lab for #}
		0111 1	J	une 3'b/	Time campica	1	1	IO	08				-			19	Comme	ants
		BH/mul	Ů	tote	5:00pm	ow	IN	V	V							19		
							-											
					1								1000					
-									-		-			-		-		
																1		
											-		-	-		-		
					1													
																1		
-				_							-		_				02 *	
					1												03-Jun-22 19:4	7
								-			-		-	-		- 11	eepthi Shaji	1
																0.01	CZESSI	
														-		-	C2F2517	-
_					1											RPI	ENV-1601	
																	1051	
-	* RELINQUISHED BY: (Sign	ature/Print)	Date: (YY/MM/	DD) Tir	me 1	RECEIVED	BY: (Signature/	Print)		Date: (YY/MM	(/DD)	Time	# jars us	ed and		Labora	top lice Only	
	NA.		22/06/0	3 7:	UBP 100	Mare	intra	ser	1 2	loralo	6/07	19:42	not sub	mitted	Time Sensitiv	e Tomoscati	Custody Se	aal Yes
	E.		1		1	1 10 0		- /	-	- 090	1-	11.14				12	119/12 Present	- /

APPENDIX E: CONSTRUCTION DEWATERING ESTIMATE RATE CALCULATIONS

Construction Dewatering Rate Estimate

590 Argus Road, Oakville, Ontario

Six (6) levels of underground parking, unconfined aquifer, groundwater seepage to rectangular excavation (line source)

Table E-1: Construction Dewatering Rate Estimates

Description	Symbol	6 Levels	Unit	Explanation
Input				
Established Grade Elevation		104.96	m asl	Based on Drawing A401, North and South Elevations, prepared by TAI, dated March 20, 2024
Highest Groundwater Elevation		102.85	m asl	Highest groundwater elevation (March 23, 2023)
Footing Elevation		83.28	m asl	Assumed 2.0 m below FFE, P6 FFE is 85.28 m asl based on Drawing A200, Level P6 Plan, prepared by TAI, dated March 20, 2024
Aquifer Bottom		82.38	m asl	Assumed 1 m below footing
Hydraulic Conductivity	К	1.22E-06	m/s	Geometric mean K
Length of Excavation	x	150.0	m	Based on Drawing A200, Level P6 Plan, prepared by TAI, dated March 20, 2024
Width of Excavation	а	90.0	m	Based on Drawing A200, Level P6 Plan, prepared by TAI, dated March 20, 2024
Output				
Top of Aquifer		102.85	m asl	water table for unconfined aquifer
Target Water Level		82.28	m asl	assumed 1 m below footing
Water Level above aquifer bottom before dewatering	Н	20.5	m	
target water level above aquifer bottom	h	0.0	m	
Radius of Influence	L (R ₀)	39.68	m	Sichardt's Formula C=1750
Construction Dewatering Flow Rate - Steady State	Q	266.08	m³/day	Construction Dewatering Flow - Dupuit Equation
Maximum Construction Flow Rate (safety factor of 1.5)	1.5Q	399.11	m³/day	During the initial period and after rains
Construction Dewatering Flow Rate - Steady State	Q	266,000	L/day	
Maximum Construction Flow Rate (safety factor of 1.5)	1.5Q	399,000	L/day	

APPENDIX F: LONG TERM DRAINAGE FLOW RATE ESTIMATE CALCULATIONS

Foundation Drain Flow Rate Estimate

590 Argus Road, Oakville, Ontario

Six (6) levels of underground parking, Unconfined Aquifer, Groundwater seepage to rectangular excavation (line source)

Table F-1: Foundation Drain Flow Rate Estimate of Southern Portion

Description	Symbol	6 Levels	Unit	Explanation
Input				
Established Grade Elevation		104.96	m asl	Based on Drawing A401, North and South Elevations, prepared by TAI, dated March 20, 2024
Highest Groundwater Elevation		98.37	m asl	Highest deep groundwater elevation from BH/MW111 (March 23, 2023)
Basement slab level (top)		85.28	m asl	P6 FFE is 87.00 m asl and P7 FFE is assumed 84.20 m asl based on drawing A401, North and South Elevations, prepared by Teeple, dated February 27
Aquifer Bottom		84.28	m asl	Assumed 1 m below basement level
Hydraulic Conductivity	К	2.30E-07	m/s	Geometric mean K of deep wells
Length of Excavation	x	150.0	m	Based on Drawing A200, Level P6 Plan, prepared by TAI, dated March 20, 2024
Width of Excavation	а	90.0	m	Based on Drawing A200, Level P6 Plan, prepared by TAI, dated March 20, 2024
Output				
Top of Aquifer		98.4	m asl	Water table for unconfined aquifer
Target Water Level		84.78	m asl	Assumed 0.5 m below basement floor level
Water Level above aquifer bottom before dewatering	Н	14.1	m	
Target water level above aquifer bottom	h	0.5	m	
Radius of Influence	L (R ₀)	29.01	m	Weber Equation
Long-Term Flow Rate - Steady State	Q	32.66	m³/day	Long-term flow rate - Dupuit Equation
Maximum Foundation Drain Flow Rate (safety factor of 2)	2Q	65.33	m³/day	During the initial period and after rains
Estimated Long-term Foundation Drain Flow Rate	Q	33,000	L/day	
Estimated Maximum Foundation Drain Flow Rate	2Q	66,000	L/day	

